CINTA作业六:拉格朗日定理

1. G 是群, H G 的子群。任取 g 1 , g 2 G ,则 g 1 H = g 2 H 当且仅当 {g_{1}}^{-1}g_{2}\in \mathbb{H}
充分性: g_{1}\mathbb{H}=g_{2}\mathbb{H},则存在  h_{1},h_{2}\in \mathbb{H}使得 g_{1}h_{1}=g_{2}h_{2},利用消去律有
               g_{1}^{-1}g_{2}=h_{1}h_{2}^{-1}\in\mathbb{H}
必要性: {g_{1}}^{-1}g_{2}\in \mathbb{H},令 h_{1}=g_{1}^{-1}g_{2},h_{2}=e
               有 g_{1}h_{1}=g_{1}g_{1}^{-1}g_{2}=eg_{2}=g_{2}h_{2}        
              所以 g_{1}\mathbb{H}=g_{2}\mathbb{H}
3. 如果 G 是群, H 是群 G 的子群,且 [ G : H ] = 2 ,请证明对任意的 g G g H = H g
证明:当 g\in\mathbb{H},g\mathbb{H}=\mathbb{H}=\mathbb{H}g
           当 g\notin \mathbb{H},\because [\mathbb{G}:\mathbb{H}]=2,存在 \mathbb{H}^{'}=\mathbb{G}-\mathbb{H}
           因为 g\notin \mathbb{H},gh\notin\mathbb{H},gh\in \mathbb{H^{'}},hg\in\mathbb{H},hg\notin\mathbb{H^{'}}
           所以 g\mathbb{H}=\mathbb{H}^{'},\mathbb{H}g=\mathbb{H}^{'}  ,  g\mathbb{H}=\mathbb{H}g
4. 如果群 H 是群 G 的真子群,即存在 g G 但是 g 6∈ H 。请证明 | H | ≤ | G | / 2
证明: H 是群 G 的真子群,则存在 g\in\mathbb{G},g\notin \mathbb{H}
           \left | \frac{\mathbb{G}}{\mathbb{H}} \right |=[\mathbb{G}:\mathbb{H}]\geq 2 \therefore \left |\mathbb{H} \right |\leq \frac{\left | \mathbb{G} \right |}{2}
5. G 是阶为 pq 的群,其中 p q 是素数。请证明 G 的任意真子群是循环群。
证明:设G的一个真子群为H,即存在g ∈ G 且 g ∉ H ,有ord(g) | |G| ,即ord(g) | pg
           设|H|=n 由拉格朗日定理 n|pg,
又g ∉ H ,故n≠ord(g)
令g ∈ H ′ , ∣ H ′∣=m,则m∣pq。
又m ≠ n 所以m=p,n=q或m=q,n=p
故G = H + H ′ 且∣H∣和∣H'∣均为素数
由推论8.2得:H和H'均为循环群
 
7. 使用群论的方法重新证明费尔马小定理和欧拉定理。

1.  G是n阶有限群,任意群元g∈G,g的阶为k,有k|n。
     g^{k}=e,g^{n}=g^{mk}=e^{m}=e

2.  G是阶为\phi (n)的有限群,任意群元g∈G,g的阶为k,有k|\phi (n)
    g^{k}=e,g^{n}=g^{mk}=e^{m}=e
 

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值