素数p阶群乘法循环群啥意思_近世代数(2)——循环群

本文介绍了近世代数中的循环群概念,探讨了如何用一个元素代表群中的所有元素,以及如何判断一个Abel群是循环群。文章通过定义、例子和证明阐述了群的阶、可逆元,以及有限群和无限群的性质。循环群不一定是Abel群的充分必要条件被提出,同时证明了有限群的某些特性。循环群作为理解群结构的第一步,为后续的群同构概念奠定了基础。
摘要由CSDN通过智能技术生成

71d6224fe25394dd4aad1f5e109a75e6.png

参考教材

  • 《近世代数》 . P22-30 . 丘维声著

前言

上一节通过引入等价关系与划分,用模

同余类去划分整数集
,从而有了
,从中我们抽象出了环的概念,又考虑到元素分零因子与可逆元两种,从而将有单位元的交换环且除了零元都是可逆元的代数结构称为域,并不是所有
都是域,只有
是素数才是,因此我们考虑更一般的情况,将
所有可逆元单独整合起来构成一个集合,最终我们有了群的概念.

本节开始,我们开始系统的研究群的结构,首先提出问题,群中的元素是否可以派出一个代表,只要用这一个代表就可以描述群中所有的元素,进而代表这个群?倘若有这种方式代表群,那么如何判断它可以有代表元素描述自身?

关于证明的学习,目前学习的内容来说,只要老老实实的学好定义即可,不需要特别的技巧性,个人并不喜欢特别花里胡哨的证明,可以欣赏但不推荐去硬学,了解即可,毕竟人生苦短,凡人都有极限.

最后,非常欢迎讨论,非常欢迎指错,对所有人都有帮助!

定义0:

  1. 有无限多个元素就称为无限群,有限个元素为有限群,此时
    的元素个数称为阶,记为
  2. 是一个群,对于
    ,
    的可逆元为
  3. 若群
    的运算为乘法,那么规定
  4. 若群
    的运算为加法,那么规定

e.g.1

为整数集对于加法构成的群,零元为

e.g.2

剩余类环
对于加法构成群,零元为

e.g.3

上述三个群,都可以用一个元素代表

通过整数幂次(或整数倍)来描述其群中所有的元素,于是我们可以直接将
去代表这个群

定义1. 设群

的运算记做乘法(或加法) ,如果
的每一个元素能写成
中的某个元素
的整数幂次(或整数倍)的形式,那么称
为循环群,把
叫做
的一个生成元,且把
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值