多传感器融合分类及对比

本文介绍了多传感器融合的三种体系结构:集中式、分布式和混合式,以及它们的优缺点。接着,文章详细阐述了多传感器融合的分类,包括数据级、特征级和决策级融合,并探讨了同步方法和误差建模补偿技术。最后,强调了多传感器融合在自动驾驶中的重要性,如提高容错性、互补性和实时性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.多传感器融合的体系结构

在多传感器融合中,按照对原始数据处理方法的不同,多传感器融合系统的体系结构可以分为三种:集中式,分布式和混合式(混合式又分为有反馈结构和无反馈结构)。

  • 集中式融合:将各传感器获得的原始数据直接送到CPU进行融合处理,可实现实时融合。由于各传感器没有自己的处理器,只有将数据都传到中央处理器中,然后实现实时融合,其特点是结构简单,数据处理精度较高,融合中心的计算和通信负载过重,系统容错性差,实时性差,早期开发常用这种方式。
  • 分布式融合:各个独立传感器使用各自独有的处理器处理数据,然后将结果送入到中央处理器中进行融合处理,优点是带宽要求低,计算快,系统可靠性和容错性高,局部失效不影响全局,缺点就是各传感器模块体积大,成本高,经费充裕可以考虑。
  • 混合式融合,是集中式和分布式的混合应用,即部分传感器采用集中式融合架构,其余传感器采用分布式融合架构。 比如毫米波雷达自带处理器,智能相机也自带处理器,其他传感器不带处理器,有处理器的将数据处理完以后传送集中处理单元,没有处理器的直接把原始数据发给集中处理单元,该融合方式结合了上面两种结构的优点,也是绝大多数使用的情况。

2.多传感器融合的分类

多传感器融合的定义:把分布在不同位置的多个同类或不同类传感器所提供的局部数据资源加以综合,采用计算机技术对其进行分析,消除多传感器信息之间可能存在的冗余和矛盾,加以互补,降低其不确实性,获得被测对象的一致性解释与描述,从而提高系统决策、规划、反应的快速性和准确性,使系统获得更充分的信息。

根据传感器信息融合在不同层级上出现,可以分为数据级融合、特征级融合、决策级融合

(1)数据级融合。针对传感器采集的数据,依赖于传感器类型,进行同类数据的融合。数据级的融合要处理的数据都是在相同类别的传感器下采集,所以数据融合不能处理异构数据。如相机和激光雷达的融合,需要将激光雷达的点云数据(x,y,z)通过标定参数投影到图像上,实现图像和深度的融合。

(2)特征级融合。先把各个传感器获得的原始数据进行初步特征提取,提取的特征信息作为预处理数据,进行分类、聚类和综合,产生特征向量,然后再采用一些基于特征融合的方法融合这些特征向量,最终数据基于融合特征的进行目标的感知输出。这是面向目标对象特征的融合。如在图像数据的融合中,可以采用边沿的特征信息,来代替全部数据信息。

(3)决策级融合。决策级融合,指的是根据特征级融合所得到的数据特征,进行 一定的判别、分类,以及简单的逻辑运算,根据应用需求进行较高级的决策,是高级的融合。决策级融合是面向应用的融合。

3.多传感器融合的同步

多传感器融合的同步主要涉及硬同步、软同步、时间同步、空间同步等概念。

①硬件同步、硬同步:使用同一种硬件同时发布触发采集命令,实现各传感器采集、测量的时间同步。做到同一时刻采集相同的信息。

②软件同步:时间同步、空间同步。

③时间同步、时间戳同步、软同步:通过统一的主机给各个传感器提供基准时间,各传感器根据已校准后的各自时间为各自独立采集的数据加上时间戳信息,可以做到所有传感器时间戳同步,但由于各个传感器各自采用频率不一致,无法保证同一时刻采集相同的信息,这时通常采用内插外推得到同一时刻的信息。

④空间同步:将不同传感器坐标系的测量值转换到同一个坐标系中,其中激光传感器在高速移动的情况下需要考虑当前速度下的帧内位移校准。

4.多传感器融合的对比

多传感器融合按数据级融合、特征级融合、决策级融合也简称为前融合、中融合与后融合

  • 前融合算法,也就是数据级融合
  1. 通常意义上只有一个感知的算法。对融合后的多维综合数据进行感知。
  2. 在原始层把数据都融合在一起,融合后的数据类似一个Super传感器,而且这个传感器不仅有能力可以看到红外线,还有能力可以看到摄像头或者RGB,也有能力看到Lidar的三维信息,就好比是一双超级眼睛。在这双超级眼睛上面,开发自己的感知算法,最后会输出一个结果层的物体。

前融合试图把相机拍摄得到图像上的像素,激光雷达的点云,毫米波雷达拟合过的一些特征信息(如果用4D毫米就是4D毫米波的点云),把这些信息去做原始数据的时空同步,然后再结合其他的信息,最后得到了一个多维度的Raw Data,再用感知算法去做分类、分隔、识别、跟踪等。其特点是数据融合的阶段早,使得数据更有关联性,数据的损失也比较少,但由于像素级的前融合非常难做,主要难点有如下几点:

  • 点云数据与像素去做匹配的时候,时空同步难度很大;
  • 对数据处理的实时性要求高,导致算力消耗巨大;
  • 不同的传感器硬件系统时间是不一样的,很难知道激光雷达的某一帧到底实际严格意义上对应了摄像头或者毫米波雷达的哪一帧,而且存在运动补偿的误差。
  • 场景的适用性差,也就是即使做了非常准确的标定,一旦换硬件或者换车型很多流程又要重新来一遍。
  • 中融合算法,也就是特征级融合

中融合这个提法,在比较书面的场合中使用的并不多,多数时候称之为特征级融合。

所谓中融合也就是属于中间层次级融合,先从每个传感器提供的原始观测数据中提取代表性的特征,再把这些特征融合成单一的特征向量;其中选择合适的特征进行融合是关键;特征信息包括边缘、方向、速度、形状等。

特征级融合可划分为两大类:目标状态融合与目标特性融合。
目标状态融合:主要应用于多传感器的目标跟踪领域;融合系统首先对传感器数据进行预处理以完成数据配准,在数据配准之后,融合处理主要实现参数关联和状态估计。

目标特性融合:就是特征层联合识别,实质就是模式识别问题;在融合前必须先对特征进行关联处理,再对特征矢量分类成有意义的组合。

在融合的三个层次中,特征级融合发展较为完善,由于在特征层已建立了一整套的行之有效的特征关联技术,可以保证融合信息的一致性;此级别融合对计算量和通信带宽要求相对降低,但由于部分数据的舍弃使其准确性也有所下降。

目前逐渐称为主流模型的BEV就属于典型的特征级融合,首先在BEV算法里面是用特征级的融合,然后再把它映射到统一的坐标下,即BEV的坐标体系里面。

然后去做融合,融合之后再进行训练学习分类,最终后融合的特征可以保留,那么同时它又不像是前融合阶段要求高精度和高算力,所以它是一个相对折中的一种方法。

  • 后融合算法,也就是目标级融合

1、每个传感器各自独立处理生成的目标数据。

2、每个传感器都有自己独立的感知,比如激光雷达有激光雷达的感知,摄像头有摄像头的感知,毫米波雷达也会做出自己的感知。

3、当所有传感器完成目标数据生成后,再由主处理器进行数据融合。

5.多传感器融合的误差建模与补偿技术

典型的有对温度敏感的IMU传感器温度误差建模及温补点云畸变补偿、相机图像的校正。

6.多传感器融合的特点

那么,多传感器融合技术有哪些优点呢?为什么自动驾驶要选择多传感器融合技术呢?

多传感器数据融合比单一传感器信息有如下优点,即容错性、互补性、实时性、经济性,所以逐步得到推广应用。

达梦数据库_SQL语言手册.pdf 数据库快照定义语句 数据库快照删除语句 第章数据查询语句和全文检索语句 单表查询 简单查询 带条件查询 集函数 情况表达式 连接查询 子查询 标量子查询 表子查询 派生表子查询 定量比较 带 谓词的子查询 多列表子查询 查询结果的合并 和 子句的使用 子句的使用 子句 选取前儿条数据 选取其屮几条数据 全文检索 层次查询 层次查询子句 层次查询相关伪列 层次查询相关操作符 层次查询相关函数 查看执行计划 第章数据的插入、删除和修改 数据插入语句 数据修改语句 数据删除语句 伪列的使用 和 自增列的使用 自增列定义 属性 第章视图 视图的作用 视图的定义 视图的删除 视图的查询 视图数据的更新 第章嵌入式 前缀和终结符 宿主变量 输入和输出变量 指示符变量 服务器登录与退出 登录服务器 退出服务器 游标的定义与操纵 定义游标语句 打开游标语句 拨动游标语句 关闭游标语句 关于可更新游标 游标定位删除语句 游标定位修改语句 单元组查询语句 动态 立即执行语句 准备语句 执行语句 异常处理 第章函数 数值函数 字符串函数 日期时间函数 空值判断函数 类型转换函数 杂类函数 系统函数 存储加密函数 标记处理函数 备份恢复函数 附加分离数据库 第章一致性和并发性 事务相关语句 事务的开始 事务的结束 保存点相关语句 设置事务隔离级及读写特性 手动上锁语句 第章存储模块 存储模块的定义 存储模块的删除 存储模块的控制语句 语句块 赋值语句 条件语句 循环语句 语句 调用语句 语句 语句 语句 语句 打印语句 存储模块的异常处理 异常变量的说明 异常的抛出 异常处理器 异常处理用法举例 存储模块的语句 游标 动态 游标变量 返回查询结果集 语句应用举例 客户端存储模块 子过程、子函数 子过程 子函数 记录类型 记录类型定义 记录赋值 第章触发器 触发器的定义 触发器类型 触发器激发顺序 新、旧行值的引用 触发器谓词 变异表 设计触发器的原则 触发器的删除 禁止和允许触发器 触发器应用举例 使用触发器实现审计功能 使用触发器维护数据完整性 使用触发器保障数据安全性 使用触发器派生字段值 第章安全管理 创建角色语句 删除角色语句 授权语句数据库权限 授权语句对象权限 授权语句角色权限 回收权限语句数据库权限 回收权限语句对象权限 回收权限语句角色权限 策略与标记管理 创建策略 修改策略 删除策略 安全标记 用户标记设置语句 表标记设置语句 审计设置语句 审计取消语句 审计信息查阅语句 审计分析 创建审计分析规则 删除审计分析规则 加密引擎 创建加密引擎 修改加密引擎 删除加密引擎 第章外部链接 创建外部链接 删除外部链接 使用外部连接进行远程对象操作 第章备份还原 备份数据库 还原数据库 第章包 创建包 创建包规范 创建包主体 删除包 删除包规范 删除包主体 应用实例 第章同义词 创建同义词 删除同义词 附录关键字和保留字 附录 语法描述说明 附录命令参考 附录系统存储过程和函数 附录技术支持 第1章结构化查询语言简介 第章结构化查询语言 简介 结构化查询语言 是在年提出的一种关系数据库语言。 由于语言接近英语的语句结构,方便简洁、使用灵活、功能强人,倍受用户及计算机工业 界的欢迎,被众多计算机公司和数据库厂商所采用,经各公司的不断修改、扩充和完善,语 言最终发展成为关系数据库的标准语言。 的第一个标准是年月由美国国家标准化组织公布的 数据库语言 简称 年国际标准化组织也通过了这一标准。以后通过对 的不断修改和完善,于年第二次公布了标准 年又公布了标准 即 。最新的标准是 (也称 年作为 《信息技术——数据库语言》发布。我国也相继 公布了数据库语言的国家标准。 成为国际标准以后,其影响远远超出了薮据库领域。例如在 软件工程、人工智 能、分布式等领域,人们不仅把作为检索数据的语言规范,而且也把作为检索图形、 图象、声音、文字等信息类型的语言规范。目前,世界上大型的著名数据库管理系统均支持 语言,如 等。在未来相当长的时间里,仍将是数据库领 域以至信息领域中数据处理的主流语言之 由于不同的产品,大都按自己产品的特点对语言进行了扩充,很难完全符合 标准。目前在 市场上已将的符合夲作为衡量产品质量的重要指标,并研制成专门的 测试软件,如 目前, 入门级和过渡级的符合率均达到,并且部分支持 更新的 标准。同时还兼容 和 的部分语言特性。本章主要 介绍系统所支持的语言 语 语言的特点 语言符合结构化査询语言标准,是标准的扩充。它集数据定乂、数据査 询、薮据操纵和数据控制于一体,是一种统一的、综合的关系数据库语言。它功能强大,使用简 单方便、容易为用户掌握 语言具有如下特点: 功能一体化 的功能一体化表现在以下两个方面 支持多媒体数据类型,用户在建表时可直接使用。系统在处理常规数据与 多媒体数据时达到了四个一体化:一体化定义、一体化存储、一体化检索、一体化处理,最大限 度地提高了数据库管理系统处理多媒体的能力和速度; 语言集数据库的定义、査询、更新、控制、维护、恢复、安全等一系列操作于 体,每一项操作都只需一种操作符表示,格式规范,风格一致,简单方便,很容易为用户所掌 握 两种用户接口使用统一语法结构的语言 语言既是自含式语言,又是嵌入式语言。作为自含式语言,它能独立运行于联机交 互方式。作为嵌入式语言, 浯句能够嵌入到和语言程序中,将高级语言也称主 语言灵活的表达能力、强大的计算功能与 语言的数据处理功能相结合,完成各种复杂 的事务处理。而在这两种不同的使用方式中, 语言的语法结构是一致的,从而为用户使 第1章结构化查询语言简介 用提供了极大的方使性和灵活性。 高度非过程化 语言是·种非过程化语言。用户只需指出“做什么”,而不需指出“怎么做”,对数 据存取路径的选择以及 语句功能的实现均由系统自动完成,与用户编制的应用程序与 具体的机器及关系 的实现细节无关,从而方便了用户,提高了应用程序的开发效率,也 增强了数据独立性和应用系统的叮移植性。 面向集合的操作方式 语言采用了集合操作方式。不仅查询结果可以是元组的集合,而且一次插入、删除、 修改操作的对象也可以是元组的集合,相对于面向记录的数据库语言一次只能操作一条记录来 语言的使用简化了用户的处理,提高了应用程序的运行效率 语言简洁,方便易学 语言功能强大,格式规范,表达简洁,接近英语的语法结构,容易为用户所掌握。 保留字与标识符 标识符的语法规则兼容标准 ,标识符分为正规标识符和定界标识符两大类。 正规标识符以字母、、、或汉字开头,后面可以跟随字母、数字、、、或者汉字,正 规标识符的最大长度是个英文字符或个汉字。正规标识符不能是保留字 正规标识符的例子:, 表 定界标识符的标识符体用双引号括起来时,标识符体可以包含任意字符,特别地,其中使用 连续两个双引号转义为一个双引号 定界标识符的例子: 保留字的清单参见附录 语言的功能及语句 语言是一种介于关系代数与关系演算之间的语言,其功能主要包括数据定义、查询 操纵和控制四个方面,通过各种不同的语句米实现。按照所实现的功能, 语句分 为以下几种 数据库、登录、用户、模式、基表、视图、索引、序列、全文索引、存储过程和触发器 的定义和删除语句,登录、基表、视图、仝文索引的修改语句,对象的更名语句; 査询(含全文检索)、插入、删除、修改语句; 数据库安全语句。包括创建角色语句、删除角色语句,授权语句、回收权限语句,修改 登录口令语句,审计设置语句、取消审计设置语句等。 在嵌入方式中,为了协调 语言与主语言不同的数据处理方式 语言引入 了游标的概念。因此在嵌入方式下,除了数据查询语句一次查询一条记录外,还有几种与游标 有关的语句: 游标的定义、打廾、关闭、拨动语句 游标定位方式的数据修改与删除语句。 为了有效维护数据库的完整性和一致性,支持 的并发控制机制 语言提供 了事务的回滚( )与提交( )语句。同时允许选择实施事务级读一致 性,它保证同一事务内的可重复读,为此提供用户多种手动上锁语句,和设置事务隔离级别 第1章结构化查询语言简介 语句 所支持的数据类型 数据类型是可表示值的集。值的逻辑表示是字值。值的物理表示依赖于实现。系统具 有 的绝大部分数据类型,以及部分 和 的数据类型。 常规数据类型 字符数据类型 类型 语法:长度 功能: 数据类型指定定长字符串。在基表中,定义 类型的列时,可以指 定一个不超过的正整数作为字符长度,例如 如果未指定长度,缺省为。 确保存储在该列的所有值都具有这一长度。 数据类型的最大长度由数据库页面大 小决定,字符类型最大长度和页面大小的对应关系请见下表支持按字节存放字符 串 表 数据库页面大 最大长度 类型 语法: 长度 功能:与 相同。 类型 语法: 长度 功能 数据类型指定变长字符串,用法类似 数据类型,可以指定一 个不超过的正整数作为字符长度,例如: 。如果未指定长度,缺省为 在系统中, 数据类型的实际最大长度由数据库页面大小决定,具体最 大长度算法如表 的区别在于前者长度不足时,系统自动填充空 格,而后者只占用实际的字节空间。 表 数据库页面大 实际最大长度 注:这个限制长度只针对建表的情况,在定义变量的时候,可以不受这个限制长度的限 制 数值数据类型
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

scott198512

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值