简单快速的Style Transfer(利用VGG19)-笔记

风格转移技术通过保留输入图片内容并应用另一图片风格,实现艺术效果。本文介绍了一种无需GANs、仅利用预训练的VGG19图像分类模型的快速方法。通过计算内容损失和风格损失,调整输入图片像素,实现风格转换。内容损失关注图像内容的一致性,风格损失则衡量局部纹理的相似性。在Tensorflow中加载VGG19模型,选择特定层计算损失,通过梯度下降更新输入图片,从而达到风格转移目的。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

What is Style Transfer

Style Transfer, 风格转移,即把图片A变成图片B的风格,但保持图片A的内容不变,举个栗子,假设下图左是你自己的作品,中图是梵高的星空,右图则是风格转移算法的结果。
在这里插入图片描述

How to do it?

风格转移的实现方法很多,复杂的算法使用到GANs,其结果会非常的精美,但会需要(十分)强大的算力(和钱)。一些改进的方法能够显著将GANs类模型的计算成本控制在合理范围,例如将一张图片切割成很多小的方块,对每个小块进行风格转移,最后再将它们拼起来。

但实际上存在一种更简单更快速的方法——不需要用到GANs、只需要借助pre-trained image classification CNN,即可完成风格转换。理解其原理之前,必须先简单提一下CNN是如何完成image classification的,我们知道CNN classifier是由很多很多的CNN神经网络组成的,不同的CNN的kernel size不一样,较浅的layers的kernel size都比较小,这样可以抓取一些细微的特征,例如动物的毛发、金属表面的质感等等,较深的layers的kernel size会逐渐增大,这样可以抓取一些更完整的特征,例如眼睛、尾巴、车轮等等。可以发现,刚刚描述的较浅的layers描述的接近于一张图片的styles——油画画笔的texture、色块的分布等等,而较深的layers则描述的更多的是一张图片的内容——眼睛、尾巴、车轮等等。于是一个简单的风格转移模型就是利用CNN classifier不同的layer抓取的内容不一这个特点来实现快速、低成本的风格转移。

具体实现方法

需要利用的工具:VGG19(in Tensorflow), Python
(我们甚至不需要GPU)

Flow

  1. 将input图片feed进一个pre-trained image architecture, like VGG or ResNet.

  2. 计算Loss
    1)Content:把content image的content layer, F l ∈ R m , n F^{l} \in \mathcal{R}^{m ,n} FlRm,n提取出来,将content layer变平成一个向量 f l ∈ R m ∗ n , 1 \mathbf{f}^{l} \in \mathcal{R}^{m*n,1} flRmn,1;将生成的图片 P l ∈ R m , n P^{l} \in \mathcal{R}^{m ,n} PlRm,n也做同样的变平处理成一个向量 p l ∈ R m ∗ n , 1 \mathbf{p}^{l} \in \mathcal{R}^{m*n,1} plRmn,1,那么content loss就是 f l \mathbf{f}^{l} fl p l \mathbf{p}^{l} p

### 回答1: vgg19-dcbb9e9d.pth是一个文件的名称,通常用于下载和使用VGG19神经网络的预训练模型。VGG19是一个深度卷积神经网络,用于图像识别任务。 该文件名中的dcbb9e9d是表示该模型的版本号或唯一标识符。通过下载vgg19-dcbb9e9d.pth文件,我们可以获得相应版本的预训练模型,以便在自己的项目中使用。 要下载vgg19-dcbb9e9d.pth文件,可以通过访问相关网站或资源库,在搜索框中输入该文件名,然后点击下载按钮或链接。一旦下载完成,我们可以将该文件保存到本地计算机或服务器中,以备将来使用。 下载完成后,我们可以使用Python深度学习库,如PyTorch,加载并使用该预训练模型。通过加载vgg19-dcbb9e9d.pth文件,我们可以实现图像识别任务,并利用VGG19模型对新的图像进行预测或特征提取。 总之,通过下载vgg19-dcbb9e9d.pth文件,我们可以获得一个特定版本的VGG19预训练模型,以便在自己的项目中应用深度学习技术。 ### 回答2: vgg19-dcbb9e9d.pth是一个预训练的VGG19模型的文件。VGG19是一个深度卷积神经网络模型,具有19层的卷积和全连接层。在计算机视觉领域,VGG19被广泛应用于图像分类、目标检测和语义分割等任务。 要下载vgg19-dcbb9e9d.pth文件,你可以通过在互联网上搜索该文件名,找到可靠的下载来源。这个文件通常以.pth为扩展名,表示它是一个PyTorch框架的模型参数文件。 下载该文件后,你可以使用Python和PyTorch库加载这个预训练的VGG19模型。通过加载这个模型,你可以使用已经在大规模图像数据集上训练过的权重,对新的图像数据进行特征提取、分类等操作。 预训练的VGG19模型通常可用于快速构建基于计算机视觉的应用程序,而无需从头开始训练和调整模型。通过使用这个模型,你可以节省大量的时间和计算资源。 总之,vgg19-dcbb9e9d.pth是一个预训练的VGG19模型的文件,下载并加载该文件后,你可以利用其中的权重进行图像分类和其他相关任务,以提高计算机视觉应用程序的性能和效果。 ### 回答3: vgg19-dcbb9e9d.pth是预训练的VGG19模型的文件名。VGG19是一种经典的卷积神经网络架构,被广泛应用于图像分类和识别任务中。这个模型文件是预先训练好的,包含了已经优化过权重和偏置的参数。 要下载vgg19-dcbb9e9d.pth文件,可以通过网络进行,找到可供下载的源地址。可能是通过浏览器直接访问下载链接,也可能是使用命令行工具如wget或curl。一旦找到下载链接,点击或执行相应的命令,就可以将文件保存到本地设备的指定位置。 下载完成后,可以将vgg19-dcbb9e9d.pth文件用于训练或测试自己的图像分类模型。在深度学习框架如PyTorch中,可以使用torchvision库加载这个预训练模型,然后根据需要进行微调或直接进行预测。 总之,vgg19-dcbb9e9d.pth是一个预训练的VGG19模型文件,通过下载并加载这个文件,可以为图像分类和识别任务提供一个基于深度学习的强大模型,快速获得准确的结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值