一、文件的使用
- 文件的类型
- 文件的打开和关闭
- 文件内容的读取
- 数据的文件写入
1.1 文件的类型
-
文件的理解
文件是数据的抽象和集合
- 文件是存储在辅助存储器上的数据序列
- 文件是数据存储的一种形式
- 文件展现形态:文本文件和二进制文件
文本文件 vs. 二进制文件
- 文本文件和二进制文件只是文件的展示方式
- 本质上,所有文件都是二进制形式存储
- 形式上,所有文件采用两种方式展示
文本文件
- 由单一特定编码组成的文件,如UTF-8编码
- 由于存在编码,也被看成是存储着的长字符串
- 适用于例如:.txt文件、.py文件等
二进制文件
- 直接由比特0和1组成,没有统一字符编码
- 一般存在二进制0和1的组织结构,即文件格式
- 适用于例如:.png文件、.avi文件等
"中国是个伟大的国家!" ☆ 文本形式 中国是个伟大的国家! ☆ 二进制形式 b'\xd6\xd0\xb9\xfa\xca\xc7\xb8\xf6\xce\xb0\xb4\xf3\xb5\xc4\xb9\xfa\xbc\xd2\xa3\xa1'
1.2 文件的打开和关闭
文件处理的步骤: 打开-操作-关闭
- 文件的打开
文件路径
打开模式
文件的打开模式 | 描述 |
---|---|
‘r’ | 默认值,只读模式,如果文件不存在,返回FileNotFoundError。 |
‘w’ | 覆盖写模式,文件不存在则创建,存在则完全覆盖。 |
‘x’ | 创建写模式,文件不存在则创建,存在则返回FileExistsError。 |
‘a’ | 追加写模式,文件不存在则创建,存在则在文件最后追加内容。 |
‘t’ | 默认值,文本文件模式。 |
‘b’ | 二进制文件模式。 |
‘+’ | 与r/w/x/a一同使用,在原功能基础上增加同时读写功能。 |
- 文件的关闭
- 文件的使用
#文本形式打开文件
tf = open("f.txt", "rt")
print(tf.readline())
tf.close()
#二进制形式打开文件
bf = open("f.txt", "rb")
print(bf.readline())
bf.close()
1.3 文件内容的读取
操作方法 | 描述 |
---|---|
.read(size=-1) | 读入全部内容,如果给出参数,读入前size长度。>>> s=f.read(2)中国 |
.readline(size=-1) | 读入一行内容,如果给出参数,读入该行前size长度。>>> s=f.readline()中国是一个伟大的国家。 |
.readlines(hint=-1) | 读入文件所有行,以每行为元素形成列表,如果给出参数,读入前hint行。 >>> s=f.readlines()[‘中国是一个伟大的国家’] |
- 文件的全文本操作
方法一:
fname=input("请输入要打开的文件名称:")
fo=open(fname,"r")
txt=fo.read() #一次读入,统一处理
#对全文txt进行处理
fo.close()
方法二:
fname=input("请输入要打开的文件名称:")
fo=open(fname,"r")
txt=fo.read(2) #按数量读入,逐步处理
while txt !="":
#对txt进行处理
txt=fo.read(2) #按数量读入,逐步处理
fo,,close()
- 文件的逐行操作
方法一:
fname = input("请输入要打开的文件名称:")
fo = open(fname,"r")
for line in fo.readlines(): #一次读入,分行处理
print(line)
fo.close()
方法二:
fname = input("请输入要打开的文件名称:")
fo=open(fname,"r")
for line in fo:
print(line) #分行读入,逐行处理
fo.close()
1.4 数据的文件写入
操作方法 | 描述 |
---|---|
.write(s) | 向文件写入一个字符串或字节流。>>>f.write(“中国是一个伟大的国家!”) |
.writelines(lines) | 将一个元素全为字符串的列表写入文件>>>ls=[“中国”,“法国”,“美国”]>>>f.writelines(ls)中国法国美国 |
.seek(offset) | 改变当前文件操作指针的位置,offset含义如下:0-文件开头;1-当前位置;2-文件结尾>>>f.seek(0) #回到文件开头 |
fo = open("output.txt","w+")
ls = ["中国", "法国", "美国"]
fo.writelines(ls)
fo.seek(0)
for line in fo:
print(line)
fo.close()
实例11: 自动轨迹绘制
"自动轨迹绘制"问题分析
-
需求:根据脚本来绘制图形?
- 不是写代码而是写数据绘制轨迹
- 数据脚本是自动化最重要的第一步
"自动轨迹绘制"实例讲解
基本思路
步骤1:定义数据文件格式(接口)
步骤2:编写程序,根据文件接口解析参数绘制图形
步骤3:编制数据文件
- 数据接口定义
- 编写程序
#AutoTraceDraw.py
import turtle as t
t.title('自动轨迹绘制')
t.setup(800, 600, 0, 0)
t.pencolor("red")
t.pensize(5)
#数据读取
datals = []
f = open("data.txt")
for line in f:
line = line.replace("\n","")
datals.append(list(map(eval, line.split(","))))
f.close()
#自动绘制
for i in range(len(datals)):
t.pencolor(datals[i][3],datals[i][4],datals[i][5])
t.fd(datals[i][0])
if datals[i][1]:
t.right(datals[i][2])
else:
t.left(datals[i][2])
- 数据文件
#data.txt
300,0,144,1,0,0
300,0,144,0,1,0
300,0,144,0,0,1
300,0,144,1,1,0
300,0,108,0,1,1
184,0,72,1,0,1
184,0,72,0,0,0
184,0,72,0,0,0
184,0,72,0,0,0
184,1,72,1,0,1
184,1,72,0,0,0
184,1,72,0,0,0
184,1,72,0,0,0
184,1,72,0,0,0
184,1,720,0,0,0
举一反三
理解方法思维
- 自动化思维:数据和功能分离,数据驱动的自动运行
- 接口化设计:格式化设计接口,清晰明了
- 二维数据应用:应用维度组织数据,二维数据最常用
应用问题的扩展
- 扩展接口设计,增加更多控制接口
- 扩展功能设计,增加弧形等更多功能
- 扩展应用需求,发展自动轨迹绘制到动画绘制
二、一维数据的格式化和处理
- 数据组织的维度
- 一维数据的表示
- 一维数据的存储
- 一维数据的处理
2.1 数据组织的维度
- 维度:一组数据的组织形式
-
一维数据
由对等关系的有序或无序数据构成,采用线性方式组织
3.1413, 3.1398, 3.1404, 3.1401, 3.1349, 3.1376
- 对应列表、数组和集合等概念
-
二维数据
由多个一维数据构成,是一维数据的组合形式
- 表格是典型的二维数据,其中,表头是二维数据的一部分
-
多维数据
有一位或二维数据在新维度上扩展形成
-
高维数据
仅利用最基本的二元关系展示数据间的复杂结构
{ "firstName" : "Tian" , "lastName" : "Song" , "address" : { "streetAddr" : "中关村南大街5号" , "city" : "北京市" , "zipcode" : "100081" } , "professional" : ["Computer Networking" , "Security"] }
-
数据的操作周期
存储 <-> 表示 <-> 操作
2.2 一维数据的表示
- 如果数据间有序:使用列表类型
ls = [3.1398, 3.1349, 3.1376]
- 列表类型可以表达一维有序数据
- for循环可以遍历数据,进而对每个数据进行处理
- 如果数据间无序:使用集合类型
st = {3.1398, 3.1349, 3.1376}
- 集合类型可以表达一维无序数据
- for循环可以遍历数据,进而对每个数据进行处理
2.3 一维数据的存储
- 存储方式一:空格分隔
中国 美国 日本 德国 法国 英国 意大利
- 使用一个或多个空格分隔进行存储,不换行
- 缺点:数据中不能存在空格
- 存储方式二:逗号分隔
中国,美国,日本,德国,法国,英国,意大利
- 使用英文半角逗号分隔数据进行存储,不换行
- 缺点:数据中不能有英文逗号
- 存储方式三:其他方式
中国$美国$日本$德国$法国$英国$意大利
- 使用其他符号或符号组合分隔,建议采用特殊符号
- 缺点:需要根据数据特点定义,通用性较差
2.4 一维数据的处理
-
数据处理
存储 <-> 表示
- 将存储的数据读入程序
- 将程序表示的数据写入文件
-
一维数据的读入处理
- 从空格分隔的文件中读入数据
中国 美国 日本 德国 法国 英国 意大利 txt = open(fname).read() ls = txt.split() f.close() >>> ls ['中国', '美国', '日本', '德国', '法国', '英国', '意大利']
- 从特殊符号分隔的文件中读入数据
中国$美国$日本$德国$法国$英国$意大利 txt = open(fname).read() ls = txt.split("$") f.close() >>> ls ['中国', '美国', '日本', '德国', '法国', '英国', '意大利']
-
一维数据的写入处理
- 采用空格分隔方式将数据写入文件
ls = ['中国', '美国', '日本'] f = open(fname, 'w') f.write(' '.join(ls)) f.close()
- 采用特殊分隔方式将数据写入文件
ls = ['中国', '美国', '日本'] f = open(fname, 'w') f.write('$'.join(ls)) f.close()
三、二维数据的格式化和处理
- 二维数据的表示
- CSV数据存储格式
- 二维数据的存储
- 二维数据的处理
二维数据的表示
使用列表类型
- 列表类型可以表达二维数据
- 使用二维列表
- 使用两层for循环遍历每个元素
- 外层列表中每个元素可以对应一行,也可以对应一列
[ [3.1398, 3.1349, 3.1376],[3.1413, 3.1404, 3.1401] ]
一二维数据的Python表示
数据维度是数据的组织形式
- 一维数据:列表和集合类型
[3.1398, 3.1349, 3.1376] 数据间有序
{3.1398, 3.1349, 3.1376} 数据间无序
- 二维数据:列表类型
[ [3.1398, 3.1349, 3.1376],[3.1413, 3.1404, 3.1401] ]
CSV数据存储格式
CSV: Comma-Separated Values
- 国际通用的一二维数据存储格式,一般.csv扩展名
- 每行一个一维数据,采用逗号分隔,无空行
- Excel软件可读入输出,一般编辑软件都可以产生
- 如果某个元素缺失,逗号仍要保留
- 二维数据的表头可以作为数据存储,也可以另行存储
- 逗号为英文半角逗号,逗号与数据之间无额外空格
二维数据的存储
按行存?按列存?
- 按行存或者按列存都可以,具体由程序决定
- 一般索引习惯:ls[row][column],先行后列
- 根据一般习惯,外层列表每个元素是一行,按行存
二维数据的处理
-
二维数据的读入处理
从CSV格式的文件中读入数据
fo = open(fname) ls = [] for line in fo: line = line.replace("\n","") ls.append(line.split(",")) fo.close()
-
二维数据的写入处理
将数据写入CSV格式的文件
ls = [[], [], []] #二维列表 f = open(fname, 'w') for item in ls: f.write(','.join(item) + '\n') f.close()
-
二维数据的逐一处理
采用二层循环
ls = [[], [], []] #二维列表 for row in ls: for column in row: print(ls[row][column])