【GRPO】GRPO算法梯度计算与参数调整详解

在强化学习中,我们的目标是最大化某一输入下的预期奖励,这个预期值是对策略下所有可能回答奖励的期望。由于实际中无法枚举所有可能的回答,我们通过采样生成多个回答,然后利用这些样本来近似这一期望。

具体来说,对于输入 (s)(一个问题),模型根据策略生成多个回答 (a_1, a_2, \dots, a_G)。每个回答 (a_i) 都有一个生成概率 (\pi_\theta(a_i \mid s)) 以及对应的奖励(或者归一化后的相对优势) (\tilde{r}_i)。理论上,整个问题的梯度应为:

∇ θ J = E a ∼

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

步子哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值