1、matlab图形着色
win+shift+s(截图)
ctrl+r注释
ctrl+t取消注释
cmap = flipud(colormap('white')); %colormap映射为白色
2、plot函数
plot(p(:,2)+0.5,p(:,1)+0.5,'Color','r','LineWidth',4); %用 plot函数绘制路径曲线,颜色为红色
3、计算程序运行时间
tic
%代码块
toc
%disp(['运行时间: ',num2str(toc)]);
4、ceil函数
其实该函数就是表示向上取整的意思
5、sub2ind函数
sub2ind是找到矩阵A对应位置的索引号
6、abs函数
求取绝对值
sqrt(9)=3 %开方操作
7、矩阵左下角索引值为1;
8、代码(参考慕羽系列文章整理而来)
%matlab初始化
%fengziyang 修改过的代码
%计算核心程序运行时间
tic;
clc; %清除命令窗口的内容
clear all; %清除工作空间的所有变量,函数,和MEX文件
close all; %关闭所有的figure窗口
%功能参数的设定部分
n = 20; %产生一个n x n的方格,修改此值可以修改生成图片的方格数
wallpercent = 0.2; %这个变量代表生成的障碍物占总方格数的比例 ,如0.5 表示障碍物占总格数的50%
Weights=1; %动态衡量启发式A星算法中的h(n)权重系数
Corner_amend=1; %选择是否进行拐角的修正,该变量设为0则不进行拐角修正,设为1则进行拐角修正
Environmental_Set=0; %0为上次的地图;这个参数用来选择是否随机生成障碍物,若设定为0,则使用上一次创建的环境信息,若设定为1,则重新随机生成障碍物
Reset_GS=1; % 首先设为1,自己设置两个端点; 这个参数用来选择是否重新设定起始点和终止点,若设定为1,开始重新设定起始点和终止点,同时需要将变量New_goalposind和New_startposind的值修改为你所选择的起始点和终止点的索引值,设为0则关闭
New_startposind=36; New_goalposind=363; %初始点黄色的,是从左下角开始往上增长,若将Reset_GS设定为1,则需要将变量New_goalposind和New_startposind的值修改为你所选择的起始点和终止点的索引值,要确保新设的这两个点处没有障碍物
%用来存放规划的路径的长度
Road_Long=0;
%方格以及障碍物的创建
if(Environmental_Set)
[field, startposind, goalposind, costchart, fieldpointers] =initializeField(n,wallpercent); %随机生成包含障碍物,起始点,终止点等信息的矩阵
save('Environmental','field','startposind','goalposind','costchart','fieldpointers' )
else
load('Environmental')
end
%重新设定起始点和终止点
if(Reset_GS)
[field, startposind, goalposind, costchart, fieldpointers] = Reset_G_S(field, startposind, goalposind, costchart, fieldpointers,New_startposind,New_goalposind);
end
% 路径规划中用到的一些矩阵的初始化
setOpen = [startposind]; setOpenCosts = [0]; setOpenHeuristics = [Inf];
setClosed = []; setClosedCosts = [];
%movementdirections = {'R','L','D','U'}; %移动方向
movementdirections = {'R','L','D','U','LU','RU','LD','RD'}; %移动方向
%初始化一些进行路径的修正需要用到的变量
Parent_node=0; %Parent_node初始化,否则会报错
Expected_note=0;%Expected_note初始化,否则会报错
untext_ii=0; %未经过检验的新的ii
amend_count=0;% 记录修正的次数
% 这个函数用来随机生成环境,障碍物,起点,终点
axishandle = createFigure(field,costchart,startposind,goalposind,'summer'); %将随机生成的方格及障碍物的数据生成图像
%%
% 这个while循环是本程序的核心,利用循环进行迭代来寻找终止点
while ~max(ismember(setOpen,goalposind)) && ~isempty(setOpen)
[temp, ii] = min(setOpenCosts +Weights*setOpenHeuristics); %寻找拓展出来的最小值
if ((setOpen(ii)~=startposind) && (Corner_amend==1))
[new_ii,amend_count_1]=Path_optimization(temp, ii,fieldpointers,setOpen,setOpenCosts,startposind,Weights,setOpenHeuristics,Parent_node,Expected_note,untext_ii,amend_count); %进行路径的修正,在保证不增加距离的基础上,使其减少转弯的次数
ii=new_ii;
amend_count=amend_count_1;
end
%这个函数的作用就是把输入的点作为父节点,然后进行拓展找到子节点,并且找到子节点的代价,并且把子节点距离终点的代价找到
%[costs,heuristics,posinds] = findFValue(setOpen(ii),setOpenCosts(ii), field,goalposind,'euclidean');
%%%%%%%%%%%%%%%%%%%%%%%%%%改进处+加上新的参数
[costs,heuristics,posinds] = findFValue(setOpen(ii),setOpenCosts(ii), field,startposind,goalposind,'taxicab',10,8);%taxicab euclidean 改进
setClosed = [setClosed; setOpen(ii)]; % 将找出来的拓展出来的点中代价最小的那个点串到矩阵setClosed 中
setClosedCosts = [setClosedCosts; setOpenCosts(ii)]; % 将拓展出来的点中代价最小的那个点的代价串到矩阵setClosedCosts 中
% 从setOpen中删除刚才放到矩阵setClosed中的那个点
%如果这个点位于矩阵的内部
if (ii > 1 && ii < length(setOpen))
setOpen = [setOpen(1:ii-1); setOpen(ii+1:end)];
setOpenCosts = [setOpenCosts(1:ii-1); setOpenCosts(ii+1:end)];
setOpenHeuristics = [setOpenHeuristics(1:ii-1); setOpenHeuristics(ii+1:end)];
%如果这个点位于矩阵第一行
elseif (ii == 1)
setOpen = setOpen(2:end);
setOpenCosts = setOpenCosts(2:end);
setOpenHeuristics = setOpenHeuristics(2:end);
%如果这个点位于矩阵的最后一行
else
setOpen = setOpen(1:end-1);
setOpenCosts = setOpenCosts(1:end-1);
setOpenHeuristics = setOpenHeuristics(1:end-1);
end
%%
% 把拓展出来的点中符合要求的点放到setOpen 矩阵中,作为待选点
for jj=1:length(posinds)
if ~isinf(costs(jj)) % 判断该点(方格)处没有障碍物%%%%%%%%%%%%%%%%%%在此处增加判断的条件
% 判断一下该点是否 已经存在于setOpen 矩阵或者setClosed 矩阵中
% 如果我们要处理的拓展点既不在setOpen 矩阵,也不在setClosed 矩阵中
if ~max([setClosed; setOpen] == posinds(jj))
fieldpointers(posinds(jj)) = movementdirections(jj);
costchart(posinds(jj)) = costs(jj);
setOpen = [setOpen; posinds(jj)];
setOpenCosts = [setOpenCosts; costs(jj)];
setOpenHeuristics = [setOpenHeuristics; heuristics(jj)];
% 如果我们要处理的拓展点已经在setOpen 矩阵中
elseif max(setOpen == posinds(jj))
I = find(setOpen == posinds(jj));
% 如果通过目前的方法找到的这个点,比之前的方法好(代价小)就更新这个点
if setOpenCosts(I) > costs(jj)
costchart(setOpen(I)) = costs(jj);
setOpenCosts(I) = costs(jj);
setOpenHeuristics(I) = heuristics(jj);
fieldpointers(setOpen(I)) = movementdirections(jj);
end
% 如果我们要处理的拓展点已经在setClosed 矩阵中
else
I = find(setClosed == posinds(jj));
% 如果通过目前的方法找到的这个点,比之前的方法好(代价小)就更新这个点
if setClosedCosts(I) > costs(jj)
costchart(setClosed(I)) = costs(jj);
setClosedCosts(I) = costs(jj);
fieldpointers(setClosed(I)) = movementdirections(jj);
end
end
end
end
%%
if isempty(setOpen) break; end
set(axishandle,'CData',[costchart costchart(:,end); costchart(end,:) costchart(end,end)]);
set(gca,'CLim',[0 1.1*max(costchart(find(costchart < Inf)))]);
drawnow;
end
%%
%调用findWayBack函数进行路径回溯,并绘制出路径曲线
if max(ismember(setOpen,goalposind))
disp('Solution found!');
[p,Road_Long]= findWayBack(goalposind,fieldpointers,Road_Long); % 调用findWayBack函数进行路径回溯,将回溯结果放于矩阵P中
disp("plot line!");
%%%%%%%%这里是画轨迹图的!%%%%%%%%%%%%%%%%
%plot(p(:,2)+0.5,p(:,1)+0.5,'Color','r','LineWidth',4); %用 plot函数绘制路径曲线,颜色为红色
drawnow;
drawnow;
clear sound
elseif isempty(setOpen)
disp('No Solution!');
clear sound
end
toc;
disp(['etime程序总运行时间:',num2str(toc)]);
%%
%findWayBack函数用来进行路径回溯,这个函数的输入参数是终止点goalposind和矩阵fieldpointers,输出参数是P
function [p,Road_Long] = findWayBack(goalposind,fieldpointers,Road_Long)
n = length(fieldpointers); % 获取环境的长度也就是n
posind = goalposind;
[py,px] = ind2sub([n,n],posind); % 将索引值posind转换为坐标值 [py,px]
p = [py px];
%利用while循环进行回溯,当我们回溯到起始点的时候停止,也就是在矩阵fieldpointers中找到S时停止
while ~strcmp(fieldpointers{posind},'S')
switch fieldpointers{posind}
case 'L' % ’L’ 表示当前的点是由左边的点拓展出来的
px = px - 1;
case 'R' % ’R’ 表示当前的点是由右边的点拓展出来的
px = px + 1;
case 'U' % ’U’ 表示当前的点是由上面的点拓展出来的
py = py - 1;
case 'D' % ’D’ 表示当前的点是由下边的点拓展出来的
py = py + 1;
%%%%%%%%%%%%
% case 'LU' % ’D’ 表示当前的点是由左上的点拓展出来的
% py = py - 1;
% px = px - 1;
% case 'RU' % ’D’ 表示当前的点是由右上边的点拓展出来的
% py = py - 1;
% px = px + 1;
% case 'LD' % ’D’ 表示当前的点是由左下边的点拓展出来的
% py = py + 1;
% px = px - 1;
% case 'RD' % ’D’ 表示当前的点是由右下边的点拓展出来的
% py = py + 1;
% px = px + 1;
end
p = [p; py px];
posind = sub2ind([n n],py,px);% 将坐标值转换为索引
Road_Long=Road_Long+1;
end
end
%%
%这个函数的作用就是把输入的点作为父节点,然后进行拓展找到子节点,并且找到子节点的代价,并且把子节点距离终点的代价找到。
%函数的输出量中costs表示拓展的子节点到起始点的代价,heuristics表示拓展出来的点到终止点的距离大约是多少,posinds表示拓展出来的子节点
function [cost,heuristic,posinds] = findFValue(posind,costsofar,field,startind,goalind,heuristicmethod,a,b)%%%%%%%%%%%%%%在此处增加新的参数
n = length(field); % 获取矩阵的长度
[currentpos(1), currentpos(2)] = ind2sub([n n],posind); %将要进行拓展的点(也就是父节点)的索引值拓展成坐标值,当前节点
[goalpos(1), goalpos(2)] = ind2sub([n n],goalind); %将终止点的索引值拓展成坐标值
[startpos(1),startpos(2)]=ind2sub([n n],startind); %将初始位置点的坐标索引值拓展为坐标值
cost = Inf*ones(4,1); heuristic = Inf*ones(4,1); pos = ones(4,2); %将矩阵cost和heuristic初始化为4x1的无穷大值的矩阵,pos初始化为4x2的值为1的矩阵
%cost = Inf*ones(8,1); heuristic = Inf*ones(8,1); pos = ones(8,2); %将矩阵cost和heuristic初始化为8x1的无穷大值的矩阵,pos初始化为8x2的值为1的矩阵
%向8个方向进行拓展,其中currentops(2)是x的坐标,1是y的坐标;
% 拓展方向一 L-向左
newx = currentpos(2) - 1; newy = currentpos(1);
if newx > 0
pos(1,:) = [newy newx];
switch lower(heuristicmethod)
case 'euclidean'
%heuristic(1) = 10*abs(goalpos(2)-newx)+10*abs(goalpos(1)-newy);%曼哈顿距离
%heuristic(1) = sqrt((goalpos(2)-newx)^2 + (goalpos(1)-newy)^2);%欧式距离
%heuristic(1)=abs(goalpos(2)-newx)+abs(goalpos(1)-newy)-0.6*min(abs(goalpos(2)-newx),abs(goalpos(1)-newy));%对角线距离
%cross=abs(abs(goalpos(2)-newx)*abs(goalpos(1)-startpos(1))-abs(startpos(2)-goalpos(2))*abs(goalpos(1)-newy))
%改进新的启发函数
if abs(goalpos(2)-newx)> abs(goalpos(1)-newy)
%heuristic(1) =10*abs(goalpos(2)-newx)+8*abs(goalpos(1)-newy);
heuristic(1) =a*abs(goalpos(2)-newx)+b*abs(goalpos(1)-newy)+(a+b)/2*sqrt(abs(abs(goalpos(2)-newx)*abs(goalpos(1)-startpos(1))-abs(startpos(2)-goalpos(2))*abs(goalpos(1)-newy)));
else
%heuristic(1) = 8*abs(goalpos(2)-newx)+10*abs(goalpos(1)-newy);
heuristic(1) =b*abs(goalpos(2)-newx)+a*abs(goalpos(1)-newy)+(a+b)/2*sqrt(abs(abs(goalpos(2)-newx)*abs(goalpos(1)-startpos(1))-abs(startpos(2)-goalpos(2))*abs(goalpos(1)-newy)));
end
case 'taxicab'
heuristic(1) = 10*abs(goalpos(2)-newx) +10*abs(goalpos(1)-newy);
end
cost(1) = costsofar + field(newy,newx);
end
% 拓展方向二 R-向右
newx = currentpos(2) + 1; newy = currentpos(1);
if newx <= n
pos(2,:) = [newy newx];
switch lower(heuristicmethod)
case 'euclidean'
%heuristic(2) = 10*abs(goalpos(2)-newx) +10*abs(goalpos(1)-newy);
%heuristic(2) = sqrt((goalpos(2)-newx)^2 + (goalpos(1)-newy)^2);
%heuristic(2)=abs(goalpos(2)-newx)+abs(goalpos(1)-newy)-0.6*min(abs(goalpos(2)-newx),abs(goalpos(1)-newy));%对角线距离
if abs(goalpos(2)-newx)> abs(goalpos(1)-newy)
%heuristic(2) =10*abs(goalpos(2)-newx)+8*abs(goalpos(1)-newy);
heuristic(2) =a*abs(goalpos(2)-newx)+b*abs(goalpos(1)-newy)+(a+b)/2*sqrt(abs(abs(goalpos(2)-newx)*abs(goalpos(1)-startpos(1))-abs(startpos(2)-goalpos(2))*abs(goalpos(1)-newy)));
else
%heuristic(2) = 8*abs(goalpos(2)-newx)+10*abs(goalpos(1)-newy);
heuristic(2) = b*abs(goalpos(2)-newx)+a*abs(goalpos(1)-newy)+(a+b)/2*sqrt(abs(abs(goalpos(2)-newx)*abs(goalpos(1)-startpos(1))-abs(startpos(2)-goalpos(2))*abs(goalpos(1)-newy)));
end
case 'taxicab'
heuristic(2) = 10*abs(goalpos(2)-newx) + 10*abs(goalpos(1)-newy);
end
cost(2) = costsofar + field(newy,newx);
end
% 拓展方向三 D-向上
newx = currentpos(2); newy = currentpos(1)-1;
if newy > 0
pos(3,:) = [newy newx];
switch lower(heuristicmethod)
case 'euclidean'
%heuristic(3) = 10*abs(goalpos(2)-newx) + 10*abs(goalpos(1)-newy);
%heuristic(3) = sqrt((goalpos(2)-newx)^2 + (goalpos(1)-newy)^2);
%heuristic(3)=abs(goalpos(2)-newx)+abs(goalpos(1)-newy)-0.6*min(abs(goalpos(2)-newx),abs(goalpos(1)-newy));%对角线距离
if abs(goalpos(2)-newx)> abs(goalpos(1)-newy)
%heuristic(3) =10*abs(goalpos(2)-newx)+8*abs(goalpos(1)-newy);
heuristic(3) =a*abs(goalpos(2)-newx)+b*abs(goalpos(1)-newy)+(a+b)/2*sqrt(abs(abs(goalpos(2)-newx)*abs(goalpos(1)-startpos(1))-abs(startpos(2)-goalpos(2))*abs(goalpos(1)-newy)));
else
%heuristic(3) = 8*abs(goalpos(2)-newx)+10*abs(goalpos(1)-newy);
heuristic(3) =b*abs(goalpos(2)-newx)+a*abs(goalpos(1)-newy)+(a+b)/2*sqrt(abs(abs(goalpos(2)-newx)*abs(goalpos(1)-startpos(1))-abs(startpos(2)-goalpos(2))*abs(goalpos(1)-newy)));
end
case 'taxicab'
heuristic(3) = 10*abs(goalpos(2)-newx) + 10*abs(goalpos(1)-newy);
end
cost(3) = costsofar + field(newy,newx);
end
% 拓展方向四 U-向下
newx = currentpos(2); newy = currentpos(1)+1;
if newy <= n
pos(4,:) = [newy newx];
switch lower(heuristicmethod)
case 'euclidean'
%heuristic(4) = 10*abs(goalpos(2)-newx) + 10*abs(goalpos(1)-newy);
%heuristic(4) = sqrt((goalpos(2)-newx)^2 + (goalpos(1)-newy)^2);
%heuristic(4)=abs(goalpos(2)-newx)+abs(goalpos(1)-newy)-0.6*min(abs(goalpos(2)-newx),abs(goalpos(1)-newy));%对角线距离
if abs(goalpos(2)-newx)> abs(goalpos(1)-newy)
%heuristic(4) =10*abs(goalpos(2)-newx)+8*abs(goalpos(1)-newy);
heuristic(4) = a*abs(goalpos(2)-newx)+b*abs(goalpos(1)-newy)+(a+b)/2*sqrt(abs(abs(goalpos(2)-newx)*abs(goalpos(1)-startpos(1))-abs(startpos(2)-goalpos(2))*abs(goalpos(1)-newy)));
else
%heuristic(4) = 8*abs(goalpos(2)-newx)+10*abs(goalpos(1)-newy);
heuristic(4) = b*abs(goalpos(2)-newx)+a*abs(goalpos(1)-newy)+(a+b)/2*sqrt(abs(abs(goalpos(2)-newx)*abs(goalpos(1)-startpos(1))-abs(startpos(2)-goalpos(2))*abs(goalpos(1)-newy)));
end
case 'taxicab'
heuristic(4) = 10*abs(goalpos(2)-newx) + 10*abs(goalpos(1)-newy);
end
cost(4) = costsofar + field(newy,newx);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % 拓展方向五 LU-向左下
% newx = currentpos(2)-1; newy = currentpos(1)+1;
% if newy <= n && newx > 0
% pos(5,:) = [newy newx];
% switch lower(heuristicmethod)
% case 'euclidean'
% %heuristic(5) = 10*abs(goalpos(2)-newx) + 10*abs(goalpos(1)-newy);
% heuristic(1) = sqrt((goalpos(2)-newx)^2 + (goalpos(1)-newy)^2);
% case 'taxicab'
% heuristic(5) = 10*abs(goalpos(2)-newx) + 10*abs(goalpos(1)-newy);
% end
% cost(5) = costsofar + field(newy,newx);
% end
% % 拓展方向六 RU-向右下
% newx = currentpos(2)+1; newy = currentpos(1)+1;
% if newy <= n && newx <= n
% pos(6,:) = [newy newx];
% switch lower(heuristicmethod)
% case 'euclidean'
% %heuristic(6) = 10*abs(goalpos(2)-newx) + 10*abs(goalpos(1)-newy);
% heuristic(1) = sqrt((goalpos(2)-newx)^2 + (goalpos(1)-newy)^2);
% case 'taxicab'
% heuristic(6) = 10*abs(goalpos(2)-newx) + 10*abs(goalpos(1)-newy);
% end
% cost(6) = costsofar + field(newy,newx);
% end
% % 拓展方向七 LD-向左上
% newx = currentpos(2)-1; newy = currentpos(1)-1;
% if newx > 0 && newy >0
% pos(7,:) = [newy newx];
% switch lower(heuristicmethod)
% case 'euclidean'
% %heuristic(7) = 10*abs(goalpos(2)-newx) + 10*abs(goalpos(1)-newy);
% heuristic(1) = sqrt((goalpos(2)-newx)^2 + (goalpos(1)-newy)^2);
% case 'taxicab'
% heuristic(7) = 10*abs(goalpos(2)-newx) + 10*abs(goalpos(1)-newy);
% end
% cost(7) = costsofar + field(newy,newx);
% end
% % 拓展方向八 RD-向右上
% newx = currentpos(2)+1; newy = currentpos(1)-1;
% if newx <= n && newy >0
% pos(8,:) = [newy newx];
% switch lower(heuristicmethod)
% case 'euclidean'
% %heuristic(8) = 10*abs(goalpos(2)-newx) + 10*abs(goalpos(1)-newy);
% heuristic(1) = sqrt((goalpos(2)-newx)^2 + (goalpos(1)-newy)^2);
% case 'taxicab'
% heuristic(8) = 10*abs(goalpos(2)-newx) + 10*abs(goalpos(1)-newy);
% end
% cost(8) = costsofar + field(newy,newx);
% end
posinds = sub2ind([n n],pos(:,1),pos(:,2)); % 将拓展出来的子节点的坐标值转换为索引值
end
%%
%这个矩阵的作用就是随机生成环境,障碍物,起始点,终止点等
function [field, startposind, goalposind, costchart, fieldpointers] = initializeField(n,wallpercent)
field = 10*ones(n,n);%设置任意两方格间的距离为10
field(ind2sub([n n],ceil(n^2.*rand(n*n*wallpercent,1)))) = Inf;%向上取整
% 随机生成起始点和终止点
startposind = sub2ind([n,n],ceil(n.*rand),ceil(n.*rand)); %随机生成起始点的索引值
goalposind = sub2ind([n,n],ceil(n.*rand),ceil(n.*rand)); %随机生成终止点的索引值
field(startposind) = 0; field(goalposind) = 0; %把矩阵中起始点和终止点处的值设为0
costchart = NaN*ones(n,n);%生成一个nxn的矩阵costchart,每个元素都设为NaN。就是矩阵初始NaN无效数据
costchart(startposind) = 0;%在矩阵costchart中将起始点位置处的值设为0
% 生成元胞数组
fieldpointers = cell(n,n);%生成元胞数组n*n
fieldpointers(:)= {'1'};
fieldpointers{startposind} = 'S'; fieldpointers{goalposind} = 'G'; %将元胞数组的起始点的位置处设为 'S',终止点处设为'G'
fieldpointers(field==inf)={'0'};
end
% end of this function
%%
%利用随机生成的环境数据来进行环境的绘制
function axishandle = createFigure(field,costchart,startposind,goalposind,color)
% 这个if..else结构的作用是判断如果没有打开的figure图,则按照相关设置创建一个figure图
if isempty(gcbf) %gcbf是当前返回图像的句柄,isempty(gcbf)假如gcbf为空的话,返回的值是1,假如gcbf为非空的话,返回的值是0
figure('Position',[560 70 700 700], 'MenuBar','none'); %对创建的figure图像进行设置,设置其距离屏幕左侧的距离为450,距离屏幕下方的距离为50,长度和宽度都为700,并且关闭图像的菜单栏
axes('position', [0.01 0.01 0.99 0.99]); %设置坐标轴的位置,左下角的坐标设为0.01,0.01 右上角的坐标设为0.99 0.99 (可以认为figure图的左下角坐标为0 0 ,右上角坐标为1 1 )
else
gcf; cla; %gcf 返回当前 Figure 对象的句柄值,然后利用cla语句来清除它
end
n = length(field); %获取矩阵的长度,并赋值给变量n
field(field < Inf) = 0; %将fieid矩阵中的随机数(也就是没有障碍物的位置处)设为0
pcolor(1:n+1,1:n+1,[field field(:,end); field(end,:) field(end,end)]);%多加了一个重复的(由n X n变为 n+1 X n+1 )
mymap=[1 1 1 %0代表无颜色(黑色),1代表全强度(白色)
0 0 0
1 1 1
0 0 0];
%cmap = flipud(colormap(mymap));
cmap = flipud(colormap(color)); %生成的cmap是一个256X3的矩阵,每一行的3个值都为0-1之间数,分别代表颜色组成的rgb值
%cmap = flipud(colormap('summer'));
cmap(1,:) = zeros(3,1); cmap(end,:) = ones(3,1); %将矩阵cmap的第一行设为0 ,最后一行设为1
colormap(flipud(cmap)); %进行颜色的倒转
hold on;
axishandle = pcolor([1:n+1],[1:n+1],[costchart costchart(:,end); costchart(end,:) costchart(end,end)]); %将矩阵costchart进行拓展,插值着色后赋给axishandle
[goalposy,goalposx] = ind2sub([n,n],goalposind);
[startposy,startposx] = ind2sub([n,n],startposind);
plot(goalposx+0.5,goalposy+0.5,'ys','Color','g','MarkerSize',10,'LineWidth',6);%绿色的 目标点
plot(startposx+0.5,startposy+0.5,'ys','MarkerSize',10,'LineWidth',6);%黄色的 初始点
%uicontrol('Style','pushbutton','String','RE-DO', 'FontSize',12, 'Position', [1 1 60 40], 'Callback','astardemo');
end
%%
function [new_ii,amend_count_1] = Path_optimization(temp, ii,fieldpointers,setOpen,setOpenCosts,startposind,Weights,setOpenHeuristics,Parent_node,Expected_note,untext_ii,amend_count)
n = length(fieldpointers); %获取矩阵的长度,并赋值给变量n
%获取其父节点的索引值
switch fieldpointers {setOpen(ii)}
case 'L' % ’L’ 表示当前的点是由左边的点拓展出来的
Parent_node = setOpen(ii) - n;
case 'R' % ’R’ 表示当前的点是由右边的点拓展出来的
Parent_node = setOpen(ii) + n;
case 'U' % ’U’ 表示当前的点是由上面的点拓展出来的
Parent_node = setOpen(ii) -1;
case 'D' % ’D’ 表示当前的点是由下边的点拓展出来的
Parent_node = setOpen(ii) + 1;
end
if Parent_node==startposind %如果这个点的父节点是起始点的话,跳过修正
new_ii=ii;
amend_count_1=amend_count;
else
%获取期望下一步要走的点的索引值
switch fieldpointers{Parent_node}
case 'L' % ’L’ 表示当前的点是由左边的点拓展出来的,走直线的话,我们期望要走的下一个点为此点右边的点
Expected_note = Parent_node + n;
case 'R' % ’R’ 表示当前的点是由右边的点拓展出来的,走直线的话,我们期望要走的下一个点为此点左边的点
Expected_note = Parent_node - n;
case 'U' % ’U’ 表示当前的点是由上面的点拓展出来的,走直线的话,我们期望要走的下一个点为此点下面的点
Expected_note = Parent_node +1;
case 'D' % ’D’ 表示当前的点是由下边的点拓展出来的,走直线的话,我们期望要走的下一个点为此点上面的点
Expected_note = Parent_node - 1;
end
if ((Expected_note<=0)||(Expected_note>n*n)) %如果我们期望的点不在待选点矩阵setOpen中,或者超出边界,跳过修正
new_ii=ii;
amend_count_1=amend_count;
else
%计算新的要进行拓展的点在setOPen中的索引值
if fieldpointers{setOpen(ii)}==fieldpointers{Parent_node} %如果修正之前要走的点就是我们期望的构成直线的点,跳出修正
new_ii=ii;
amend_count_1=amend_count;
elseif find(setOpen == Expected_note) %如果我们期望要走的点在待选点矩阵setOpen中
untext_ii=find(setOpen == Expected_note);
now_cost=setOpenCosts(untext_ii) +Weights*setOpenHeuristics(untext_ii); %计算期望点要花费的代价
if temp==now_cost %如果我们期望的点要花费的代价等于修正之前要走的点花费的代价,就进行修正(因为之前要走的点,是待选点矩阵setOPen中代价最小的一个点之一,所以期望的点的代价不可能小于该点)
new_ii=untext_ii; %将新的setOPen矩阵的索引值赋值给new_ii输出
amend_count=amend_count+1;
amend_count_1=amend_count; %amend_count_1中记录了我们进行修正的次数,为了查看这个函数是否有发挥作用
else
new_ii=ii; %如果我们期望的点要花费的代价大于修正之前要走的点花费的代价,就跳过修正(A星算法要保证进行拓展的点是待选点中代价最小的,这也是导致远离终止点的哪一类拐角无法得到修正的原因)
amend_count_1=amend_count;
end
else
new_ii=ii; %如果我们期望的点不在待选点矩阵setOpen中(也就是这个点是障碍物或者超出边界了),则跳过修正
amend_count_1=amend_count;
end
end
end
end
function [field, startposind, goalposind, costchart, fieldpointers] = Reset_G_S(field, startposind, goalposind, costchart, fieldpointers,New_startposind,New_goalposind)
%在initializeField函数创建环境时,将field矩阵中没有障碍物的点处设定为10,有障碍物的点处设定为inf,起始点和终止点设为0
%现在需要将新的起始点和终止点处设为0,原来起始点和终止点处设为10
field(startposind) = 10; field(goalposind) = 10;
field(New_startposind) = 0; field(New_goalposind) = 0;
%在initializeField函数创建环境时,将costchart矩阵中的起始点设定为0,其他点设定为NAN
%现在需要将新的起始点设定为0,原来的起始点设定为1
costchart(startposind) = NaN;
costchart(New_startposind) =0;
% 在initializeField函数创建环境时,将fieldpointers元胞数组中起始点的位置处设为'S',终止点处设为'G',有障碍物的点设为'0',没有障碍物的点设为'1'
% 现在需要将新的起始点处设为'S',新的终止点处设为'G',原来的起始点和终止点处设为'1'
fieldpointers{startposind} = '1'; fieldpointers{goalposind} = '1';
fieldpointers{New_startposind} = 'S'; fieldpointers{New_goalposind} = 'G';
%最后我们将新的起始点和新的终止点的索引值分别赋值给startposind和goalposind进行输出
startposind=New_startposind;
goalposind=New_goalposind;
end