修改记录哇

1、matlab图形着色
在这里插入图片描述
win+shift+s(截图)
ctrl+r注释
ctrl+t取消注释

cmap = flipud(colormap('white')); %colormap映射为白色

2、plot函数

 plot(p(:,2)+0.5,p(:,1)+0.5,'Color','r','LineWidth',4);  %用 plot函数绘制路径曲线,颜色为红色

3、计算程序运行时间

tic
%代码块
toc
%disp(['运行时间: ',num2str(toc)]);

4、ceil函数
其实该函数就是表示向上取整的意思
在这里插入图片描述
5、sub2ind函数
sub2ind是找到矩阵A对应位置的索引号
在这里插入图片描述
6、abs函数
求取绝对值

sqrt(9)=3 %开方操作

7、矩阵左下角索引值为1;
8、代码(参考慕羽系列文章整理而来)

%matlab初始化
%fengziyang 修改过的代码
%计算核心程序运行时间
tic;
clc;             %清除命令窗口的内容
clear all;       %清除工作空间的所有变量,函数,和MEX文件
close all;       %关闭所有的figure窗口

%功能参数的设定部分
n = 20;              %产生一个n x n的方格,修改此值可以修改生成图片的方格数
wallpercent = 0.2;   %这个变量代表生成的障碍物占总方格数的比例 ,如0.5 表示障碍物占总格数的50%
Weights=1;           %动态衡量启发式A星算法中的h(n)权重系数
Corner_amend=1;      %选择是否进行拐角的修正,该变量设为0则不进行拐角修正,设为1则进行拐角修正
Environmental_Set=0; %0为上次的地图;这个参数用来选择是否随机生成障碍物,若设定为0,则使用上一次创建的环境信息,若设定为1,则重新随机生成障碍物
Reset_GS=1;          % 首先设为1,自己设置两个端点;    这个参数用来选择是否重新设定起始点和终止点,若设定为1,开始重新设定起始点和终止点,同时需要将变量New_goalposind和New_startposind的值修改为你所选择的起始点和终止点的索引值,设为0则关闭
New_startposind=36;   New_goalposind=363;  %初始点黄色的,是从左下角开始往上增长,若将Reset_GS设定为1,则需要将变量New_goalposind和New_startposind的值修改为你所选择的起始点和终止点的索引值,要确保新设的这两个点处没有障碍物
 
%用来存放规划的路径的长度
Road_Long=0;

%方格以及障碍物的创建
if(Environmental_Set)
[field, startposind, goalposind, costchart, fieldpointers] =initializeField(n,wallpercent); %随机生成包含障碍物,起始点,终止点等信息的矩阵
save('Environmental','field','startposind','goalposind','costchart','fieldpointers' )
else
load('Environmental')
end

%重新设定起始点和终止点
if(Reset_GS)
[field, startposind, goalposind, costchart, fieldpointers] = Reset_G_S(field, startposind, goalposind, costchart, fieldpointers,New_startposind,New_goalposind);
end

% 路径规划中用到的一些矩阵的初始化
setOpen = [startposind]; setOpenCosts = [0]; setOpenHeuristics = [Inf];
setClosed = []; setClosedCosts = [];
%movementdirections = {'R','L','D','U'};  %移动方向
movementdirections = {'R','L','D','U','LU','RU','LD','RD'};  %移动方向

%初始化一些进行路径的修正需要用到的变量
Parent_node=0; %Parent_node初始化,否则会报错
Expected_note=0;%Expected_note初始化,否则会报错
untext_ii=0;  %未经过检验的新的ii
amend_count=0;% 记录修正的次数


% 这个函数用来随机生成环境,障碍物,起点,终点
axishandle = createFigure(field,costchart,startposind,goalposind,'summer');    %将随机生成的方格及障碍物的数据生成图像

%%


% 这个while循环是本程序的核心,利用循环进行迭代来寻找终止点
while ~max(ismember(setOpen,goalposind)) && ~isempty(setOpen)
   
    [temp, ii] = min(setOpenCosts +Weights*setOpenHeuristics);     %寻找拓展出来的最小值 
    
    if ((setOpen(ii)~=startposind) && (Corner_amend==1))
    [new_ii,amend_count_1]=Path_optimization(temp, ii,fieldpointers,setOpen,setOpenCosts,startposind,Weights,setOpenHeuristics,Parent_node,Expected_note,untext_ii,amend_count); %进行路径的修正,在保证不增加距离的基础上,使其减少转弯的次数
    ii=new_ii;
    amend_count=amend_count_1;
    end
    
    %这个函数的作用就是把输入的点作为父节点,然后进行拓展找到子节点,并且找到子节点的代价,并且把子节点距离终点的代价找到
    %[costs,heuristics,posinds] = findFValue(setOpen(ii),setOpenCosts(ii), field,goalposind,'euclidean');
    
    
    %%%%%%%%%%%%%%%%%%%%%%%%%%改进处+加上新的参数
    [costs,heuristics,posinds] = findFValue(setOpen(ii),setOpenCosts(ii), field,startposind,goalposind,'taxicab',10,8);%taxicab  euclidean  改进
    
    
  setClosed = [setClosed; setOpen(ii)];     % 将找出来的拓展出来的点中代价最小的那个点串到矩阵setClosed 中 
  setClosedCosts = [setClosedCosts; setOpenCosts(ii)];    % 将拓展出来的点中代价最小的那个点的代价串到矩阵setClosedCosts 中
  
  % 从setOpen中删除刚才放到矩阵setClosed中的那个点
  %如果这个点位于矩阵的内部
  if (ii > 1 && ii < length(setOpen))
    setOpen = [setOpen(1:ii-1); setOpen(ii+1:end)];
    setOpenCosts = [setOpenCosts(1:ii-1); setOpenCosts(ii+1:end)];
    setOpenHeuristics = [setOpenHeuristics(1:ii-1); setOpenHeuristics(ii+1:end)];
    
  %如果这个点位于矩阵第一行
  elseif (ii == 1)
    setOpen = setOpen(2:end);
    setOpenCosts = setOpenCosts(2:end);
    setOpenHeuristics = setOpenHeuristics(2:end);
    
  %如果这个点位于矩阵的最后一行
  else
    setOpen = setOpen(1:end-1);
    setOpenCosts = setOpenCosts(1:end-1);
    setOpenHeuristics = setOpenHeuristics(1:end-1);
  end
  
 %%  
  % 把拓展出来的点中符合要求的点放到setOpen 矩阵中,作为待选点
  for jj=1:length(posinds)
  
    if ~isinf(costs(jj))   % 判断该点(方格)处没有障碍物%%%%%%%%%%%%%%%%%%在此处增加判断的条件
        
      % 判断一下该点是否 已经存在于setOpen 矩阵或者setClosed 矩阵中
      % 如果我们要处理的拓展点既不在setOpen 矩阵,也不在setClosed 矩阵中
      if ~max([setClosed; setOpen] == posinds(jj))
        fieldpointers(posinds(jj)) = movementdirections(jj);
        costchart(posinds(jj)) = costs(jj);
        setOpen = [setOpen; posinds(jj)];
        setOpenCosts = [setOpenCosts; costs(jj)];
        setOpenHeuristics = [setOpenHeuristics; heuristics(jj)];
        
      % 如果我们要处理的拓展点已经在setOpen 矩阵中
      elseif max(setOpen == posinds(jj))
        I = find(setOpen == posinds(jj));
        % 如果通过目前的方法找到的这个点,比之前的方法好(代价小)就更新这个点
        if setOpenCosts(I) > costs(jj)
          costchart(setOpen(I)) = costs(jj);
          setOpenCosts(I) = costs(jj);
          setOpenHeuristics(I) = heuristics(jj);
          fieldpointers(setOpen(I)) = movementdirections(jj);
        end
        
        % 如果我们要处理的拓展点已经在setClosed 矩阵中
      else
        I = find(setClosed == posinds(jj));
        % 如果通过目前的方法找到的这个点,比之前的方法好(代价小)就更新这个点
        if setClosedCosts(I) > costs(jj)
          costchart(setClosed(I)) = costs(jj);
          setClosedCosts(I) = costs(jj);
          fieldpointers(setClosed(I)) = movementdirections(jj);
        end
      end
    end
  end
  
 %% 
  
  if isempty(setOpen) break; end
  set(axishandle,'CData',[costchart costchart(:,end); costchart(end,:) costchart(end,end)]);
  set(gca,'CLim',[0 1.1*max(costchart(find(costchart < Inf)))]);
  drawnow; 
end

%%

%调用findWayBack函数进行路径回溯,并绘制出路径曲线
if max(ismember(setOpen,goalposind))
  disp('Solution found!');
  [p,Road_Long]= findWayBack(goalposind,fieldpointers,Road_Long); % 调用findWayBack函数进行路径回溯,将回溯结果放于矩阵P中
  disp("plot line!");
  %%%%%%%%这里是画轨迹图的!%%%%%%%%%%%%%%%%
  %plot(p(:,2)+0.5,p(:,1)+0.5,'Color','r','LineWidth',4);  %用 plot函数绘制路径曲线,颜色为红色
  drawnow;
  drawnow;
  clear sound
elseif isempty(setOpen)
  disp('No Solution!'); 
  clear sound
end
toc;
disp(['etime程序总运行时间:',num2str(toc)]);
%% 

%findWayBack函数用来进行路径回溯,这个函数的输入参数是终止点goalposind和矩阵fieldpointers,输出参数是P
function [p,Road_Long] = findWayBack(goalposind,fieldpointers,Road_Long)

    n = length(fieldpointers);  % 获取环境的长度也就是n
    posind = goalposind;
    [py,px] = ind2sub([n,n],posind); % 将索引值posind转换为坐标值 [py,px]
    p = [py px];
    
    %利用while循环进行回溯,当我们回溯到起始点的时候停止,也就是在矩阵fieldpointers中找到S时停止
    while ~strcmp(fieldpointers{posind},'S')
      switch fieldpointers{posind}
          
        case 'L' % ’L’ 表示当前的点是由左边的点拓展出来的
          px = px - 1;
        case 'R' % ’R’ 表示当前的点是由右边的点拓展出来的
          px = px + 1;
        case 'U' % ’U’ 表示当前的点是由上面的点拓展出来的
          py = py - 1;
        case 'D' % ’D’ 表示当前的点是由下边的点拓展出来的
          py = py + 1;
         %%%%%%%%%%%% 
%         case 'LU' % ’D’ 表示当前的点是由左上的点拓展出来的
%           py = py - 1;
%           px = px - 1;
%         case 'RU' % ’D’ 表示当前的点是由右上边的点拓展出来的
%           py = py - 1;
%           px = px + 1;
%         case 'LD' % ’D’ 表示当前的点是由左下边的点拓展出来的
%           py = py + 1;
%           px = px - 1;
%         case 'RD' % ’D’ 表示当前的点是由右下边的点拓展出来的
%           py = py + 1;
%           px = px + 1;
      end
      p = [p; py px];
      posind = sub2ind([n n],py,px);% 将坐标值转换为索引
    
      Road_Long=Road_Long+1;
    end
end

%% 
%这个函数的作用就是把输入的点作为父节点,然后进行拓展找到子节点,并且找到子节点的代价,并且把子节点距离终点的代价找到。
%函数的输出量中costs表示拓展的子节点到起始点的代价,heuristics表示拓展出来的点到终止点的距离大约是多少,posinds表示拓展出来的子节点
function [cost,heuristic,posinds] = findFValue(posind,costsofar,field,startind,goalind,heuristicmethod,a,b)%%%%%%%%%%%%%%在此处增加新的参数
    n = length(field);  % 获取矩阵的长度
    [currentpos(1), currentpos(2)] = ind2sub([n n],posind);   %将要进行拓展的点(也就是父节点)的索引值拓展成坐标值,当前节点
    [goalpos(1), goalpos(2)] = ind2sub([n n],goalind);        %将终止点的索引值拓展成坐标值
    [startpos(1),startpos(2)]=ind2sub([n n],startind);                %将初始位置点的坐标索引值拓展为坐标值
    cost = Inf*ones(4,1); heuristic = Inf*ones(4,1); pos = ones(4,2); %将矩阵cost和heuristic初始化为4x1的无穷大值的矩阵,pos初始化为4x2的值为1的矩阵
    %cost = Inf*ones(8,1); heuristic = Inf*ones(8,1); pos = ones(8,2); %将矩阵cost和heuristic初始化为8x1的无穷大值的矩阵,pos初始化为8x2的值为1的矩阵
    %8个方向进行拓展,其中currentops(2)是x的坐标,1是y的坐标;
    % 拓展方向一 L-向左
    newx = currentpos(2) - 1; newy = currentpos(1);
    if newx > 0
      pos(1,:) = [newy newx];
      switch lower(heuristicmethod)
        case 'euclidean'
          %heuristic(1) = 10*abs(goalpos(2)-newx)+10*abs(goalpos(1)-newy);%曼哈顿距离
          %heuristic(1) = sqrt((goalpos(2)-newx)^2 + (goalpos(1)-newy)^2);%欧式距离
          %heuristic(1)=abs(goalpos(2)-newx)+abs(goalpos(1)-newy)-0.6*min(abs(goalpos(2)-newx),abs(goalpos(1)-newy));%对角线距离
          %cross=abs(abs(goalpos(2)-newx)*abs(goalpos(1)-startpos(1))-abs(startpos(2)-goalpos(2))*abs(goalpos(1)-newy))
          
          %改进新的启发函数
          if abs(goalpos(2)-newx)> abs(goalpos(1)-newy)
              %heuristic(1) =10*abs(goalpos(2)-newx)+8*abs(goalpos(1)-newy);
              heuristic(1) =a*abs(goalpos(2)-newx)+b*abs(goalpos(1)-newy)+(a+b)/2*sqrt(abs(abs(goalpos(2)-newx)*abs(goalpos(1)-startpos(1))-abs(startpos(2)-goalpos(2))*abs(goalpos(1)-newy)));
          else
              %heuristic(1) = 8*abs(goalpos(2)-newx)+10*abs(goalpos(1)-newy);
              heuristic(1) =b*abs(goalpos(2)-newx)+a*abs(goalpos(1)-newy)+(a+b)/2*sqrt(abs(abs(goalpos(2)-newx)*abs(goalpos(1)-startpos(1))-abs(startpos(2)-goalpos(2))*abs(goalpos(1)-newy)));
          end
          
        case 'taxicab'
          heuristic(1) = 10*abs(goalpos(2)-newx) +10*abs(goalpos(1)-newy);
      end
      cost(1) = costsofar + field(newy,newx);
    end

    % 拓展方向二 R-向右
    newx = currentpos(2) + 1; newy = currentpos(1);
    if newx <= n
      pos(2,:) = [newy newx];
      switch lower(heuristicmethod)
        case 'euclidean'
          %heuristic(2) = 10*abs(goalpos(2)-newx) +10*abs(goalpos(1)-newy);
          %heuristic(2) = sqrt((goalpos(2)-newx)^2 + (goalpos(1)-newy)^2);
          %heuristic(2)=abs(goalpos(2)-newx)+abs(goalpos(1)-newy)-0.6*min(abs(goalpos(2)-newx),abs(goalpos(1)-newy));%对角线距离
          
           if abs(goalpos(2)-newx)> abs(goalpos(1)-newy)
             %heuristic(2) =10*abs(goalpos(2)-newx)+8*abs(goalpos(1)-newy);
             heuristic(2) =a*abs(goalpos(2)-newx)+b*abs(goalpos(1)-newy)+(a+b)/2*sqrt(abs(abs(goalpos(2)-newx)*abs(goalpos(1)-startpos(1))-abs(startpos(2)-goalpos(2))*abs(goalpos(1)-newy)));
           else
             %heuristic(2) = 8*abs(goalpos(2)-newx)+10*abs(goalpos(1)-newy);
             heuristic(2) = b*abs(goalpos(2)-newx)+a*abs(goalpos(1)-newy)+(a+b)/2*sqrt(abs(abs(goalpos(2)-newx)*abs(goalpos(1)-startpos(1))-abs(startpos(2)-goalpos(2))*abs(goalpos(1)-newy)));
           end
          
        case 'taxicab'
          heuristic(2) = 10*abs(goalpos(2)-newx) + 10*abs(goalpos(1)-newy);
      end
      cost(2) = costsofar + field(newy,newx);
    end

    % 拓展方向三 D-向上
    newx = currentpos(2); newy = currentpos(1)-1;
    if newy > 0
      pos(3,:) = [newy newx];
      switch lower(heuristicmethod)
        case 'euclidean'
          %heuristic(3) = 10*abs(goalpos(2)-newx) + 10*abs(goalpos(1)-newy);
          %heuristic(3) = sqrt((goalpos(2)-newx)^2 + (goalpos(1)-newy)^2);
          %heuristic(3)=abs(goalpos(2)-newx)+abs(goalpos(1)-newy)-0.6*min(abs(goalpos(2)-newx),abs(goalpos(1)-newy));%对角线距离
          
           if abs(goalpos(2)-newx)> abs(goalpos(1)-newy)
             %heuristic(3) =10*abs(goalpos(2)-newx)+8*abs(goalpos(1)-newy);
             heuristic(3) =a*abs(goalpos(2)-newx)+b*abs(goalpos(1)-newy)+(a+b)/2*sqrt(abs(abs(goalpos(2)-newx)*abs(goalpos(1)-startpos(1))-abs(startpos(2)-goalpos(2))*abs(goalpos(1)-newy)));
           else
             %heuristic(3) = 8*abs(goalpos(2)-newx)+10*abs(goalpos(1)-newy);
             heuristic(3) =b*abs(goalpos(2)-newx)+a*abs(goalpos(1)-newy)+(a+b)/2*sqrt(abs(abs(goalpos(2)-newx)*abs(goalpos(1)-startpos(1))-abs(startpos(2)-goalpos(2))*abs(goalpos(1)-newy)));
          end

        case 'taxicab'
          heuristic(3) = 10*abs(goalpos(2)-newx) + 10*abs(goalpos(1)-newy);
      end
      cost(3) = costsofar + field(newy,newx);
    end

    % 拓展方向四 U-向下
    newx = currentpos(2); newy = currentpos(1)+1;
    if newy <= n
      pos(4,:) = [newy newx];
      switch lower(heuristicmethod)
        case 'euclidean'
          %heuristic(4) = 10*abs(goalpos(2)-newx) + 10*abs(goalpos(1)-newy);
          %heuristic(4) = sqrt((goalpos(2)-newx)^2 + (goalpos(1)-newy)^2);
          %heuristic(4)=abs(goalpos(2)-newx)+abs(goalpos(1)-newy)-0.6*min(abs(goalpos(2)-newx),abs(goalpos(1)-newy));%对角线距离
          
           if abs(goalpos(2)-newx)> abs(goalpos(1)-newy)
             %heuristic(4) =10*abs(goalpos(2)-newx)+8*abs(goalpos(1)-newy);
             heuristic(4) = a*abs(goalpos(2)-newx)+b*abs(goalpos(1)-newy)+(a+b)/2*sqrt(abs(abs(goalpos(2)-newx)*abs(goalpos(1)-startpos(1))-abs(startpos(2)-goalpos(2))*abs(goalpos(1)-newy)));
           else
             %heuristic(4) = 8*abs(goalpos(2)-newx)+10*abs(goalpos(1)-newy);
             heuristic(4) = b*abs(goalpos(2)-newx)+a*abs(goalpos(1)-newy)+(a+b)/2*sqrt(abs(abs(goalpos(2)-newx)*abs(goalpos(1)-startpos(1))-abs(startpos(2)-goalpos(2))*abs(goalpos(1)-newy)));
          end

        case 'taxicab'
          heuristic(4) = 10*abs(goalpos(2)-newx) + 10*abs(goalpos(1)-newy);
      end
      cost(4) = costsofar + field(newy,newx);
    end
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%     % 拓展方向五 LU-向左下
%      newx = currentpos(2)-1; newy = currentpos(1)+1;
%     if newy <= n && newx > 0
%       pos(5,:) = [newy newx];
%       switch lower(heuristicmethod)
%         case 'euclidean'
%           %heuristic(5) = 10*abs(goalpos(2)-newx) + 10*abs(goalpos(1)-newy);
%           heuristic(1) = sqrt((goalpos(2)-newx)^2 + (goalpos(1)-newy)^2);
%         case 'taxicab'
%           heuristic(5) = 10*abs(goalpos(2)-newx) + 10*abs(goalpos(1)-newy);
%       end
%       cost(5) = costsofar + field(newy,newx);
%     end
%     % 拓展方向六 RU-向右下
%      newx = currentpos(2)+1; newy = currentpos(1)+1;
%     if newy <= n && newx <= n
%       pos(6,:) = [newy newx];
%       switch lower(heuristicmethod)
%         case 'euclidean'
%           %heuristic(6) = 10*abs(goalpos(2)-newx) + 10*abs(goalpos(1)-newy);
%           heuristic(1) = sqrt((goalpos(2)-newx)^2 + (goalpos(1)-newy)^2);
%         case 'taxicab'
%           heuristic(6) = 10*abs(goalpos(2)-newx) + 10*abs(goalpos(1)-newy);
%       end
%       cost(6) = costsofar + field(newy,newx);
%     end
%     % 拓展方向七 LD-向左上
%      newx = currentpos(2)-1; newy = currentpos(1)-1;
%     if newx > 0 && newy >0
%       pos(7,:) = [newy newx];
%       switch lower(heuristicmethod)
%         case 'euclidean'
%           %heuristic(7) = 10*abs(goalpos(2)-newx) + 10*abs(goalpos(1)-newy);
%           heuristic(1) = sqrt((goalpos(2)-newx)^2 + (goalpos(1)-newy)^2);
%         case 'taxicab'
%           heuristic(7) = 10*abs(goalpos(2)-newx) + 10*abs(goalpos(1)-newy);
%       end
%       cost(7) = costsofar + field(newy,newx);
%     end
%     % 拓展方向八 RD-向右上
%      newx = currentpos(2)+1; newy = currentpos(1)-1;
%     if newx <= n && newy >0
%       pos(8,:) = [newy newx];
%       switch lower(heuristicmethod)
%         case 'euclidean'
%           %heuristic(8) = 10*abs(goalpos(2)-newx) + 10*abs(goalpos(1)-newy);
%           heuristic(1) = sqrt((goalpos(2)-newx)^2 + (goalpos(1)-newy)^2);
%         case 'taxicab'
%           heuristic(8) = 10*abs(goalpos(2)-newx) + 10*abs(goalpos(1)-newy);
%       end
%       cost(8) = costsofar + field(newy,newx);
%     end
    
    
     posinds = sub2ind([n n],pos(:,1),pos(:,2)); % 将拓展出来的子节点的坐标值转换为索引值
end

%% 
%这个矩阵的作用就是随机生成环境,障碍物,起始点,终止点等
function [field, startposind, goalposind, costchart, fieldpointers] = initializeField(n,wallpercent)
    field = 10*ones(n,n);%设置任意两方格间的距离为10
    field(ind2sub([n n],ceil(n^2.*rand(n*n*wallpercent,1)))) = Inf;%向上取整
    % 随机生成起始点和终止点
    startposind = sub2ind([n,n],ceil(n.*rand),ceil(n.*rand));  %随机生成起始点的索引值
    goalposind = sub2ind([n,n],ceil(n.*rand),ceil(n.*rand));   %随机生成终止点的索引值
    field(startposind) = 0; field(goalposind) = 0;  %把矩阵中起始点和终止点处的值设为0
    
    costchart = NaN*ones(n,n);%生成一个nxn的矩阵costchart,每个元素都设为NaN。就是矩阵初始NaN无效数据
    costchart(startposind) = 0;%在矩阵costchart中将起始点位置处的值设为0
    
    % 生成元胞数组
    fieldpointers = cell(n,n);%生成元胞数组n*n
    fieldpointers(:)= {'1'};
    fieldpointers{startposind} = 'S'; fieldpointers{goalposind} = 'G'; %将元胞数组的起始点的位置处设为 'S',终止点处设为'G'
    fieldpointers(field==inf)={'0'};
    
   
end
% end of this function

%%
%利用随机生成的环境数据来进行环境的绘制
function axishandle = createFigure(field,costchart,startposind,goalposind,color)

      % 这个if..else结构的作用是判断如果没有打开的figure图,则按照相关设置创建一个figure图
      if isempty(gcbf)                                       %gcbf是当前返回图像的句柄,isempty(gcbf)假如gcbf为空的话,返回的值是1,假如gcbf为非空的话,返回的值是0
      figure('Position',[560 70 700 700], 'MenuBar','none');  %对创建的figure图像进行设置,设置其距离屏幕左侧的距离为450,距离屏幕下方的距离为50,长度和宽度都为700,并且关闭图像的菜单栏
      axes('position', [0.01 0.01 0.99 0.99]);               %设置坐标轴的位置,左下角的坐标设为0.01,0.01   右上角的坐标设为0.99 0.99  (可以认为figure图的左下角坐标为0 0   ,右上角坐标为1 1else
      gcf; cla;   %gcf 返回当前 Figure 对象的句柄值,然后利用cla语句来清除它
      end
      
      n = length(field);  %获取矩阵的长度,并赋值给变量n
      field(field < Inf) = 0; %将fieid矩阵中的随机数(也就是没有障碍物的位置处)设为0
      pcolor(1:n+1,1:n+1,[field field(:,end); field(end,:) field(end,end)]);%多加了一个重复的(由n X n变为 n+1 X n+1 )
      mymap=[1 1 1 %0代表无颜色(黑色),1代表全强度(白色)
          0 0 0
          1 1 1
          0 0 0];
      %cmap = flipud(colormap(mymap));
      cmap = flipud(colormap(color));  %生成的cmap是一个256X3的矩阵,每一行的3个值都为0-1之间数,分别代表颜色组成的rgb值
      %cmap = flipud(colormap('summer'));
      cmap(1,:) = zeros(3,1); cmap(end,:) = ones(3,1); %将矩阵cmap的第一行设为0 ,最后一行设为1
      colormap(flipud(cmap)); %进行颜色的倒转 
      hold on;
      axishandle = pcolor([1:n+1],[1:n+1],[costchart costchart(:,end); costchart(end,:) costchart(end,end)]);  %将矩阵costchart进行拓展,插值着色后赋给axishandle
      [goalposy,goalposx] = ind2sub([n,n],goalposind);
      [startposy,startposx] = ind2sub([n,n],startposind);
       plot(goalposx+0.5,goalposy+0.5,'ys','Color','g','MarkerSize',10,'LineWidth',6);%绿色的 目标点
       plot(startposx+0.5,startposy+0.5,'ys','MarkerSize',10,'LineWidth',6);%黄色的 初始点
       %uicontrol('Style','pushbutton','String','RE-DO', 'FontSize',12, 'Position', [1 1 60 40], 'Callback','astardemo');
end
%%
function [new_ii,amend_count_1] = Path_optimization(temp, ii,fieldpointers,setOpen,setOpenCosts,startposind,Weights,setOpenHeuristics,Parent_node,Expected_note,untext_ii,amend_count)
   n = length(fieldpointers);  %获取矩阵的长度,并赋值给变量n
   
 %获取其父节点的索引值
  switch fieldpointers {setOpen(ii)}
        case 'L' % ’L’ 表示当前的点是由左边的点拓展出来的
          Parent_node = setOpen(ii) - n;
        case 'R' % ’R’ 表示当前的点是由右边的点拓展出来的
           Parent_node = setOpen(ii) + n;
        case 'U' % ’U’ 表示当前的点是由上面的点拓展出来的
           Parent_node = setOpen(ii) -1;
        case 'D' % ’D’ 表示当前的点是由下边的点拓展出来的
           Parent_node = setOpen(ii) + 1;          
  end
  
  if Parent_node==startposind  %如果这个点的父节点是起始点的话,跳过修正
     new_ii=ii;
     amend_count_1=amend_count;
  else 
  
       %获取期望下一步要走的点的索引值
     switch fieldpointers{Parent_node}
          
        case 'L' % ’L’ 表示当前的点是由左边的点拓展出来的,走直线的话,我们期望要走的下一个点为此点右边的点
          Expected_note = Parent_node + n;
        case 'R' % ’R’ 表示当前的点是由右边的点拓展出来的,走直线的话,我们期望要走的下一个点为此点左边的点
           Expected_note =  Parent_node - n;
        case 'U' % ’U’ 表示当前的点是由上面的点拓展出来的,走直线的话,我们期望要走的下一个点为此点下面的点
           Expected_note = Parent_node +1;
        case 'D' % ’D’ 表示当前的点是由下边的点拓展出来的,走直线的话,我们期望要走的下一个点为此点上面的点
           Expected_note = Parent_node - 1;
     end
   
     if ((Expected_note<=0)||(Expected_note>n*n))   %如果我们期望的点不在待选点矩阵setOpen中,或者超出边界,跳过修正
          new_ii=ii;
          amend_count_1=amend_count;
     else
           
           %计算新的要进行拓展的点在setOPen中的索引值 
         if fieldpointers{setOpen(ii)}==fieldpointers{Parent_node}   %如果修正之前要走的点就是我们期望的构成直线的点,跳出修正
                new_ii=ii;
                amend_count_1=amend_count;
         elseif  find(setOpen == Expected_note)  %如果我们期望要走的点在待选点矩阵setOpen中
             
                 untext_ii=find(setOpen == Expected_note);
                 now_cost=setOpenCosts(untext_ii) +Weights*setOpenHeuristics(untext_ii);   %计算期望点要花费的代价
                 
                if  temp==now_cost       %如果我们期望的点要花费的代价等于修正之前要走的点花费的代价,就进行修正(因为之前要走的点,是待选点矩阵setOPen中代价最小的一个点之一,所以期望的点的代价不可能小于该点)
                     new_ii=untext_ii;   %将新的setOPen矩阵的索引值赋值给new_ii输出
                     amend_count=amend_count+1;
                     amend_count_1=amend_count; %amend_count_1中记录了我们进行修正的次数,为了查看这个函数是否有发挥作用
                else
                     new_ii=ii;          %如果我们期望的点要花费的代价大于修正之前要走的点花费的代价,就跳过修正(A星算法要保证进行拓展的点是待选点中代价最小的,这也是导致远离终止点的哪一类拐角无法得到修正的原因)
                     amend_count_1=amend_count;
                end
         else
                 new_ii=ii;    %如果我们期望的点不在待选点矩阵setOpen中(也就是这个点是障碍物或者超出边界了),则跳过修正
                 amend_count_1=amend_count;
         end
     end   
  end     
     
end



function [field, startposind, goalposind, costchart, fieldpointers] = Reset_G_S(field, startposind, goalposind, costchart, fieldpointers,New_startposind,New_goalposind)
    
   %在initializeField函数创建环境时,将field矩阵中没有障碍物的点处设定为10,有障碍物的点处设定为inf,起始点和终止点设为0
   %现在需要将新的起始点和终止点处设为0,原来起始点和终止点处设为10
    field(startposind) = 10; field(goalposind) = 10;  
    field(New_startposind) = 0; field(New_goalposind) = 0;  
   
    %在initializeField函数创建环境时,将costchart矩阵中的起始点设定为0,其他点设定为NAN
    %现在需要将新的起始点设定为0,原来的起始点设定为1
    costchart(startposind) = NaN;
    costchart(New_startposind) =0;
    
    % 在initializeField函数创建环境时,将fieldpointers元胞数组中起始点的位置处设为'S',终止点处设为'G',有障碍物的点设为'0',没有障碍物的点设为'1'
    % 现在需要将新的起始点处设为'S',新的终止点处设为'G',原来的起始点和终止点处设为'1'
    fieldpointers{startposind} = '1'; fieldpointers{goalposind} = '1'; 
    fieldpointers{New_startposind} = 'S'; fieldpointers{New_goalposind} = 'G'; 
  
    %最后我们将新的起始点和新的终止点的索引值分别赋值给startposind和goalposind进行输出
    startposind=New_startposind;
    goalposind=New_goalposind;
end



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

HSMgogogo!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值