torch x = x.view(-1, ...)理解

在torch里面,view函数相当于numpy的reshape,来看几个例子:

a = torch.arange(1, 17)  # a's shape is (16,)

a.view(4, 4) # output below
tensor([[ 1,  2,  3,  4],
        [ 5,  6,  7,  8],
        [ 9, 10, 11, 12],
        [13, 14, 15, 16]])
[torch.FloatTensor of size 4x4]

a.view(2, 2, 4) # output below
tensor([[[ 1,  2,  3,  4],
         [ 5,  6,  7,  8]],

        [[ 9, 10, 11, 12],
         [13, 14, 15, 16]]])
[torch.FloatTensor of size 2x2x4]

在函数的参数中经常可以看到-1例如x.view(-1, 4)

这里-1表示一个不确定的数,就是你如果不确定你想要reshape成几行,但是你很肯定要reshape成4列,那不确定的地方就可以写成-1

例如一个长度的16向量x,

x.view(-1, 4)等价于x.view(4, 4)

x.view(-1, 2)等价于x.view(8,2)

以此类推

### 理解 `compute_grid_offsets` 函数 YOLOv3 及其变体在目标检测过程中,为了提高定位精度,通常会引入网格偏移量的概念。对于给定的特征图尺寸 \( n \times n \),每个 grid cell 负责预测位于该区域内的物体边界框。因此,计算这些 grid cells 的精确位置变得至关重要。 #### 计算过程解析 1. **初始化变量** - 特征图大小由输入图像经过一系列卷积操作后的维度决定。 - 需要创建两个张量来存储 x 方向和 y 方向上各个 grid cell 的索引值[^1]。 2. **构建索引矩阵** - 使用 PyTorch 提供的功能可以高效地生成代表所有可能坐标的二维数组。 - 这些坐标将帮助确定每个 anchor box 应放置的确切位置,并且通过 logistic activation 将它们约束在一个合理的范围内。 ```python def compute_grid_offsets(batch_size, height, width, cuda=True): # 创建浮点类型的 Tensor 来保存 xy 坐标 FloatTensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor # 构建网格索引 grid_x = torch.arange(width).repeat(height, 1).view([1, 1, height, width]).type(FloatTensor) grid_y = torch.arange(height).repeat(width, 1).t().view([1, 1, height, width]).type(FloatTensor) return grid_x, grid_y ``` 3. **应用激活函数** - 经过网络前向传播获得 raw predictions 后,需对其进行变换使其适应实际需求。 - 此处采用 sigmoid 函数作为最后一层非线性映射,确保输出始终处于合理区间内[^2]。 4. **调整尺度** - 结合预定义的比例因子(即锚点宽度高度),最终形成标准化后的 bounding boxes 参数表示形式。 ```python # 对于每一个 batch 中的每一张图片,在 gi,gj 处的 anchor[a] 上进行处理 pxy = pxy.sigmoid() * 2 - 0.5 # 归一化到 [-0.5, 1.5] pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i] # 缩放到真实空间并平方以保持正值 ``` ### 性能优化建议 - **减少冗余运算**:当批量处理多张图片时,可考虑提前准备好共享部分的数据结构,比如固定的网格索引表,从而节省重复构造的时间开销。 - **利用 GPU 并行加速**:尽可能多地把数据传输至显存中执行大规模矩阵运算,充分发挥现代硬件的优势[^3]。 - **内存管理优化**:注意控制临时对象生命周期,及时释放不再使用的资源,防止因频繁分配回收造成性能瓶颈。
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值