可变形卷积Deformable Convolution Net(DCN)理解

本文介绍了可形变卷积网络(DCN)的原因、概念及实现细节。传统卷积无法适应几何变形,而DCN通过允许卷积核形状变化以适应不同场景。文中提到了相关论文和非官方实现代码,并解释了DCN的关键步骤,包括学习偏移量、双线性内插以及如何应用这些偏移到正常卷积中。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文地址:https://arxiv.org/pdf/1703.06211

相关代码(非官方):https://github.com/4uiiurz1/pytorch-deform-conv-v2/tree/529abbbe9b81e852d272220c855255fd631c43c6

1. 为什么做DCN

传统的卷积采用固定尺寸的卷积核,不能很好地适应几何形变

2. 什么是DCN

可形变卷积,卷积核的形状是可变的,也就是感受野可以变化,但注意感受野的元素是“不变”的。

3. DCN的具体实现

具体细节可以参考这个知乎:https://zhuanlan.zhihu.com/p/62661196

preview

代码似乎也是按照这个流程写的,不过上面的输出结果不应该是(b*h*w*2c),而是(b*h*w* (2kernel_size*kernel_size)),因为只需要记录可变形卷积滤波器变形之后的位置,滤波器的原始尺寸是kernel_size*kernel_size,需

### Deformable Convolutional Networks 的原始论文 Deformable Convolutional Networks (DCN) 的原始论文是由 Microsoft Research 提出的,名为《Deformable Convolutional Networks》[^1]。该论文首次介绍了可变形卷积Deformable Convolution)的概念及其在网络中的应用。文中提到的传统卷积操作仅能在固定的窗口内进行计算,而 DCN 则通过引入偏移量(offsets),使得网络能够动态调整局部感受野的位置[^2]。 此外,在这篇论文中还提出了两种核心模块:**deformable convolution** 和 **deformable RoI pooling**。这些模块的设计目的是增强模型对空间变换的适应能力,从而提升其在目标检测和其他视觉任务上的性能[^3]。 如果需要进一步了解其实现细节以及理论背景,可以查阅上述论文的具体章节,尤其是关于如何生成 offsets 并将其应用于卷积过程的部分。 ```python import torch.nn as nn class DeformConv(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False): super(DeformConv, self).__init__() self.offset_conv = nn.Conv2d(in_channels, 2 * kernel_size * kernel_size, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias) self.regular_conv = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias) def forward(self, x): offset = self.offset_conv(x) output = self.regular_conv(x, offset) return output ``` 此代码片段展示了一个简化版的可变形卷积实现思路,其中 `offset` 是由单独的卷积层生成并用于调节采样位置。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值