接触人脸对齐已经有半个月了,现就将自己学习当中常用的资料整理如下,供有需要的人查阅:
一、主要学习内容
1 学习了SDM for face alignment;
2 深入了解SDM\SCR for face alignment原理及实现步骤;
3 学习了解了SDM方法的优缺点;
4了解了关于人脸识别发展状况及现在常用的算法;
5 学习了人脸识别相关算法:牛顿法、最小二乘法、SIFT、PCA、SVD等;
6 学习了ASM算法的训练及测试步骤;
7 学习了基于梯度图像的模板匹配算法;
8 学习了在线特征点的运动匹配原理;
9 了解了最新发展的gc-forest算法。
二、主要成果
1 配置了系统训练环境,搭建了人脸识别-人脸对齐中的训练-测试平台;
2 对原有算法进行了改进;
http://wangcaiyong.com/2015/08/15/sdm3/
改进一:Adaptive Feature Block
改进二:Adaptive Regression
改进三:Ragid Regularization
二、代码整理及相关出处
1 SDM for face alignment 源代码出处
https://github.com/tntrung/impSDM
2 SCR for face alignment 源代码出处
https://github.com/fagg/SCR-Face-Alignment
3 SDM for face alignment 预处理略讲
http://blog.csdn.net/xiamentingtao/article/details/47306973
4SDM for face alignment 训练略讲
http://blog.csdn.net/xiamentingtao/article/details/47307017
5 SDM for face alignment 测试略讲
http://blog.csdn.net/xiamentingtao/article/details/47307087
6改进的算法参考源
http://wangcaiyong.com/2015/08/14/sdm1/
http://wangcaiyong.com/2015/08/15/sdm2/
http://wangcaiyong.com/2015/08/15/sdm3/
7 训练测试环境搭建所需资料下载
https://github.com/tntrung/impSDM
https://github.com/fagg/SDM-Face-Alignment
数据集https://ibug.doc.ic.ac.uk/resources/facial-point-annotations/
Vlfeat library: http://www.vlfeat.org/
libLinear: www.csie.ntu.edu.tw/~cjlin/liblinear/
8 人脸对齐相关概念介绍
http://blog.csdn.net/huneng1991/article/details/51901912
http://blog.csdn.net/xiamentingtao/article/details/47306887