Description
四级考试已经过去好几个星期了,但是小银还是对自己的英语水平担心不已。
小银打算好好学习英语,争取下次四级考试和小学弟小学妹一起拿下它!
四级考试的时候,监考老师会按考号分配固定的座位,但唯一不变的是每两个人之间肯定至少会留下两个空座位,原因相信大家都懂得。
那么问题来了,我们现在只关注教室里的一排座位,假设每排有n个座位,小银想知道这一排至少坐一个人的前提下,一共有多少种坐法。
小银打算好好学习英语,争取下次四级考试和小学弟小学妹一起拿下它!
四级考试的时候,监考老师会按考号分配固定的座位,但唯一不变的是每两个人之间肯定至少会留下两个空座位,原因相信大家都懂得。
那么问题来了,我们现在只关注教室里的一排座位,假设每排有n个座位,小银想知道这一排至少坐一个人的前提下,一共有多少种坐法。
Input
多组输入。
第一行输入整数n,代表教室里这一排的座位数目。(1 <= n <= 45)
Output
输出种类数目。输入输出各占一行,保证数据合法。
Sample Input
1 3 5
Sample Output
1 3 8
解题思路:
这道题虽然容易理解,但还是比较难以做出来的,首先要明确这是一道递推题,要用递推思路来解,第i个座位有两种情况,一是此座位上有人,那么问题减到i-3,二是此座位上没有人问题减为i-1,但是因为要求至少有一个人,所以再+1
心得体会:
对于这种题,要明确思路,找寻规律,将问题化简
代码:
#include<iostream>
//#include<bits/stdc++.h>
using namespace std;
int main()
{
long int n,i;
long int a[50];
a[1]=1; a[2]=2; a[3]=3; a[4]=5; a[5]=8;
for(i=6;i<50;i++)
{
a[i]=a[i-1]+a[i-3]+1;
}
while(cin>>n)
cout<<a[n]<<endl;
return 0;
}