(计蒜客 31453)ACM-ICPC 2018 徐州赛区网络预赛 - A. Hard to prepare - (计数&递归)

题目链接:https://nanti.jisuanke.com/t/31453

题解参考自:https://blog.csdn.net/Jaihk662/article/details/82561427

题意:n个数字排成一圈,每个数字范围[0, \small 2^k-1],问有多少种不同的序列满足对于所有相邻的两个数字,它们异或值不能为\small 2^k-1,其中第一个数字和最后一个数字也算相邻。(0<n,k≤1e6) .

解析:①.首先易知第1个数字有2^k种选择,第2到第n-1个数字均有2^k-1种选择(保证与前一个异或值不能为0即可),而第n个数字即不可以和第1个数冲突,又不能和第n-1个数冲突。那么此时的总方案数为:\small 2^k(2^k-2)(2^k-1)^{n-2}

          ②.但是发现当第1个数与第n-1个数相同时,由于第n个数字少了一个冲突所以它有2^k-1种选择,所以上面对第n个数字少统计了一种情况,此情况方案就是当把第1个数与第n-1个数合并成一个后的长度为n-2的序列的总方案数。

代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=1e9+7;
const ll MAXN=1e6+5;

ll qpow(ll a, ll b)
{
	ll ans=1;
	while(b)
	{
		if(b%2)
			ans=ans*a%mod;
		a=a*a%mod;
		b>>=1;
	}
	return ans;
}

ll pow2[MAXN],ans[MAXN];
ll solve(int n, int m)
{
	ll ans;
	if(n==2)
		return pow2[m]*(pow2[m]-1)%mod;
	if(n==1)
		return pow2[m];
	ans = (pow2[m]*qpow(pow2[m]-1,n-2)%mod*max(pow2[m]-2,0ll)%mod+solve(n-2,m))%mod;
	return ans;
}
int main(void)
{
	int T,n,m,i;
	pow2[0]=1;
	for(i=1;i<MAXN;i++)
		pow2[i]=pow2[i-1]*2%mod;
	scanf("%d",&T);
	while(T--)
	{
		scanf("%d%d",&n,&m);
		printf("%lld\n",solve(n,m));
	}
	return 0;
}

 

 

发布了583 篇原创文章 · 获赞 90 · 访问量 11万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 像素格子 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览