POJ 1681 Painter's Problem,POJ 1222 EXTENDED LIGHTS OUT (高斯消元之异或方程组),高斯消元模板

  两个异或方程组的题目,都比较经典,贴上代码当模板,代码来自他人博客

POJ 1222

题目大意:给你一个5*6的格子,每个格子中有灯(亮着1,暗着0),每次你可以把一个暗的点亮(或者亮的熄灭)然后它上下左右的灯也会跟着变化。最后让你把所有的灯熄灭,问你应该改变哪些灯。

/*
    Poj 1222
    Author: Robert_Yuan
    Memory: 364K
    Time: 0MS
*/
#include<cstdio>
#include<cstring>

using namespace std;

#define maxn 32

int n,m;
int x[maxn];
int a[maxn][maxn];
int w[maxn][maxn];                    //w[i][j] 表示 i,j是否能互相影响 

void swap(int i,int j){  //交换两行
    int t;
    for(int k=i;k<=m*n+1;k++)
        t=w[i][k],w[i][k]=w[j][k],w[j][k]=t;
}

void Xor(int i,int j){   //计算
    for(int k=i;k<=m*n+1;k++)
        w[j][k]=w[j][k]^w[i][k];
}

void print(){         //Debug
    for(int i=1;i<=n*m;i++){
        for(int j=1;j<=m*n+1;j++)
            printf("%d ",w[i][j]);
        printf("\n");
    }    
    printf("\n\n");
}

void gauss(){                        //高斯消元 解 异或方程 
    //print();
    
    for(int i=1;i<=m*n;i++){
        bool find=false;
        for(int j=i;j<=m*n;j++)      //列选主元消元
            if(w[j][i]){             
                swap(i,j);find=true;break;
            }
        if(!find)    continue;
        for(int j=i+1;j<=m*n;j++)
            if(w[j][i])
                Xor(i,j);
    }
    
    //print();
    
    for(int i=m*n;i>=1;i--){  //求解xi
        x[i]=w[i][m*n+1];
        if(!x[i])    continue;
        for(int j=i-1;j>=1;j--)  //直接将x[i]带入其余方程
            if(w[j][i])
                w[j][m*n+1]^=x[i];
    }
    for(int i=1;i<=n;i++){
        for(int j=1;j<=m;j++)
            printf("%d ",x[(i-1)*m+j]);
        printf("\n");
    }
}

void prework(){  //初始化增广矩阵
    n=5,m=6;
    memset(w,0,sizeof(w));
    for(int i=1;i<=n;i++)    
        for(int j=1;j<=m;j++)
            scanf("%d",&a[i][j]),w[(i-1)*m+j][m*n+1]=a[i][j];
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++){
            w[(i-1)*m+j][(i-1)*m+j]=1;                //自己和上下左右是对自己有影响的点 
            if(j!=1) w[(i-1)*m+j][(i-1)*m+j-1]=1;
            if(j!=m) w[(i-1)*m+j][(i-1)*m+j+1]=1;
            if(i!=n) w[(i-1)*m+j][i*m+j]=1;
            if(i!=1) w[(i-1)*m+j][(i-2)*m+j]=1;
        }
}

int main(){
    int T,cnt=0;
    scanf("%d",&T);
    while(T--){
        prework();
        printf("PUZZLE #%d\n",++cnt);
        gauss();
    }
}

代码2:
/*
POJ 1681
*/

#include<stdio.h>
#include<algorithm>
#include<math.h>
#include<string.h>
#include<iostream>
using namespace std;

const int MAXN=300;

//有equ个方程,var个变元。增广矩阵行数为equ,分别为0到equ-1,列数为var+1,分别为0到var.
int equ,var;
int a[MAXN][MAXN];//增广矩阵
int x[MAXN];//解集

bool free_x[MAXN];//标记是否是不确定的变元
int free_num;//不确定变元个数


void Debug(void)
{
    int i, j;
    for (i = 0; i < equ; i++)
    {
        for (j = 0; j < var + 1; j++)
        {
            cout << a[i][j] << " ";
        }
        cout << endl;
    }
    cout << endl;
}

int  Gauss()
{
    int i,j,k;
    int max_r;
    int col;
    int temp;

    int free_x_num;
    int free_index;

    col=0;
    for(k=0;k<equ&&col<var;k++,col++)
    {
        max_r=k;
        for(i=k+1;i<equ;i++) //选主元
        {
            if(abs(a[i][col])>abs(a[max_r][col]))max_r=i;
        }
        if(max_r!=k)  //选定主元后交换
        {
            for(j=col;j<var+1;j++)swap(a[k][j],a[max_r][j]);
        }
        if(a[k][col]==0) //x[col]为自由变量
        {
            k--;
            continue;
        }
        for(i=k+1;i<equ;i++)  //消元
        {
            if(a[i][col]!=0)
            {
                for(j=col;j<var+1;j++)
                  a[i][j]^=a[k][j];
            }
        }
    }
    for(i=k;i<equ;i++)
    {
        if(a[i][col]!=0)return -1;//无解
    }
    for(i=var-1;i>=0;i--)   //解xi
    {
        x[i]=a[i][var];
        for(j=i+1;j<var;j++) //带入第i个方程的其他项
          x[i]^=(a[i][j]&&x[j]);
    }
    return 0;
}


int n;

void init()
{
    memset(a,0,sizeof(a));
    memset(x,0,sizeof(x));
    memset(free_x, 1, sizeof(free_x)); // 一开始全是不确定的变元.
    equ=n*n;
    var=n*n;
    for(int i=0;i<n;i++)
       for(int j=0;j<n;j++)
       {
           int t=i*n+j;
           a[t][t]=1;
           if(i>0)a[(i-1)*n+j][t]=1;
           if(i<n-1)a[(i+1)*n+j][t]=1;
           if(j>0)a[i*n+j-1][t]=1;
           if(j<n-1)a[i*n+j+1][t]=1;
       }
}
char str[20];

int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d",&n);
        init();
        for(int i=0;i<n;i++)
        {
            scanf("%s",&str);
            for(int j=0;j<n;j++)
            {
                if(str[j]=='y')a[i*n+j][n*n]=0;
                else a[i*n+j][n*n]=1;
            }
        }
        int t=Gauss();
        if(t==-1)
        {
            printf("inf\n");
            continue;
        }

        int ans=0;
        for(int i=0;i<n*n;i++)
          if(x[i]==1)ans++;

        printf("%d\n",ans);
    }
    return 0;
}


POJ 1681

题意:

一个n*n 的木板 ,每个格子 都 可以 染成 白色和黄色,( 一旦我们对也个格子染色 ,他的上下左右 都将改变颜色);

给定一个初始状态 , 求将 所有的 格子 染成黄色 最少需要染几次? 若 不能 染成 输出 inf。

/*
POJ 1681
*/

#include<stdio.h>
#include<algorithm>
#include<math.h>
#include<string.h>
#include<iostream>
using namespace std;
const int INF=0x3fffffff;
const int MAXN=300;

int a[MAXN][MAXN];//增广矩阵
int x[MAXN];      //解集

int free_x[MAXN];//标记是否是不确定的变元
int free_num;    //不确定变元个数

//高斯消元法解方程组(Gauss-Jordan elimination).
//(-1表示无解,大于0表示结果)
//有equ个方程,var个变元。增广矩阵行数为equ,分别为0到equ-1,列数为var+1,分别为0到var.
int Gauss(int equ,int var)
{
    int i,j,k;
    int max_r;//当前这列绝对值最大的行.
    int col;  //当前处理的列
    int free_index;
    free_num=0;
    for(int i=0;i<=var;i++)
    {
        x[i]=0;
        free_x[i]=0;
    }
    //转换为阶梯阵.
    col=0; // 当前处理的列
    for(k = 0;k < equ && col < var;k++,col++)
    {   //枚举当前处理的行.
        //找到该col列元素绝对值最大的那行与第k行交换.(为了在除法时减小误差)
        max_r=k;
        for(i=k+1;i<equ;i++)
        {
            if(abs(a[i][col])>abs(a[max_r][col])) max_r=i;
        }
        if(max_r!=k)
        {// 与第k行交换.
            for(j=k;j<var+1;j++) swap(a[k][j],a[max_r][j]);
        }
        if(a[k][col]==0)
        {// 说明该col列第k行以下全是0了,则处理当前行的下一列.
            k--;
            free_x[free_num++]=col;
            continue;
        }
        for(i=k+1;i<equ;i++)
        {// 枚举要删去的行.
            if(a[i][col]!=0)
            {
                for(j=col;j<var+1;j++)
                {
                    a[i][j] ^= a[k][j];
                }
            }
        }
    }

    // 1. 无解的情况: 化简的增广阵中存在(0, 0, ..., a)这样的行(a != 0).
    for (i = k; i < equ; i++)
    { // 对于无穷解来说,如果要判断哪些是自由变元,那么初等行变换中的交换就会影响,则要记录交换.
        if (a[i][col] != 0) return -1;
    }

    int stat=1<<(var-k);//自由变元有 var-k 个
    int res=INF;
    for(i=0;i<stat;i++)//枚举所有变元的赋值方案
    {
        int cnt=0;
        free_index=i;
        for(j=0;j<var-k;j++) //枚举为每一个变元赋值,其值与一个二进制串index对应,而index是对二进制串的枚举
        {
            x[free_x[j]]=(free_index&1);
            if(x[free_x[j]]) cnt++;
            free_index>>=1;
        }
        for(j=k-1;j>=0;j--) //将枚举的值带入其它方程求解
        {
            int tmp=a[j][var];
            for(int l=j+1;l<var;l++)
              if(a[j][l]) tmp^=x[l];
            x[j]=tmp;
            if(x[j])cnt++;
        }
        if(cnt<res)res=cnt;
    }
    return res;
}

int n;

void init()
{
    memset(a,0,sizeof(a));
    memset(x,0,sizeof(x));
    memset(free_x, 1, sizeof(free_x)); // 一开始全是不确定的变元.
    for(int i=0;i<n;i++)
       for(int j=0;j<n;j++)
       {
           int t=i*n+j;
           a[t][t]=1;
           if(i>0)a[(i-1)*n+j][t]=1;
           if(i<n-1)a[(i+1)*n+j][t]=1;
           if(j>0)a[i*n+j-1][t]=1;
           if(j<n-1)a[i*n+j+1][t]=1;
       }
}
char str[20];

int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d",&n);
        init();
        for(int i=0;i<n;i++)
        {
            scanf("%s",str);
            for(int j=0;j<n;j++)
            {
                if(str[j]=='y')a[i*n+j][n*n]=0;
                else a[i*n+j][n*n]=1;
            }
        }
        int t=Gauss(n*n,n*n);
        if(t==-1)
        {
            printf("inf\n");
            continue;
        }
        printf("%d\n",t);
    }
    return 0;
}

补充:注意第85至92行

for(j=k-1;j>=0;j--) //将枚举的值带入其它方程求解  
{  
    int tmp=a[j][var];  
    for(int l=j+1;l<var;l++)
        if(a[j][l]) tmp^=x[l];  
    x[j]=tmp;  
    if(x[j])cnt++;  
}  
由于得出的a矩阵并不一定是上三角的所以应该是下面的代码,不知道为什么上面的也对。

for(j=k-1;j>=0;j--) //将枚举的值带入其它方程求解
{
    int col;
    for(int l=j;l<var;l++)  
        if(a[j][l]){col=l;break;}
    //求出的col即是代表当前第j行该解的非自由元变量X[col]
    int tmp=a[j][var];
    for(int l=col+1;l<var;l++)
        if(a[j][l]) tmp^=x[l];
    x[col]=tmp;
    if(x[col])cnt++;
}

参考:

POJ 1681 Painter's Problem(高斯消元法)

Poj 1222 EXTENDED LIGHTS OUT

http://blog.csdn.net/sdau20163942/article/details/79182813

最后再贴上一个高斯消元模板:高斯消元法(模板)

#include<stdio.h>
#include<algorithm>
#include<iostream>
#include<string.h>
#include<math.h>
using namespace std;

const int MAXN=50;



int a[MAXN][MAXN];//增广矩阵
int x[MAXN];//解集
bool free_x[MAXN];//标记是否是不确定的变元



/*
void Debug(void)
{
    int i, j;
    for (i = 0; i < equ; i++)
    {
        for (j = 0; j < var + 1; j++)
        {
            cout << a[i][j] << " ";
        }
        cout << endl;
    }
    cout << endl;
}
*/


inline int gcd(int a,int b)
{
    int t;
    while(b!=0)
    {
        t=b;
        b=a%b;
        a=t;
    }
    return a;
}
inline int lcm(int a,int b)
{
    return a/gcd(a,b)*b;//先除后乘防溢出
}

// 高斯消元法解方程组(Gauss-Jordan elimination).(-2表示有浮点数解,但无整数解,
//-1表示无解,0表示唯一解,大于0表示无穷解,并返回自由变元的个数)
//有equ个方程,var个变元。增广矩阵行数为equ,分别为0到equ-1,列数为var+1,分别为0到var.
int Gauss(int equ,int var)
{
    int i,j,k;
    int max_r;// 当前这列绝对值最大的行.
    int col;//当前处理的列
    int ta,tb;
    int LCM;
    int temp;
    int free_x_num;
    int free_index;

    for(int i=0;i<=var;i++)
    {
        x[i]=0;
        free_x[i]=true;
    }

    //转换为阶梯阵.
    col=0; // 当前处理的列
    for(k = 0;k < equ && col < var;k++,col++)
    {// 枚举当前处理的行.
// 找到该col列元素绝对值最大的那行与第k行交换.(为了在除法时减小误差)
        max_r=k;
        for(i=k+1;i<equ;i++)
        {
            if(abs(a[i][col])>abs(a[max_r][col])) max_r=i;
        }
        if(max_r!=k)
        {// 与第k行交换.
            for(j=k;j<var+1;j++) swap(a[k][j],a[max_r][j]);
        }
        if(a[k][col]==0)
        {// 说明该col列第k行以下全是0了,则处理当前行的下一列.
            k--;
            continue;
        }
        for(i=k+1;i<equ;i++)
        {// 枚举要删去的行.
            if(a[i][col]!=0)
            {
                LCM = lcm(abs(a[i][col]),abs(a[k][col]));
                ta = LCM/abs(a[i][col]);
                tb = LCM/abs(a[k][col]);
                if(a[i][col]*a[k][col]<0)tb=-tb;//异号的情况是相加
                for(j=col;j<var+1;j++)
                {
                    a[i][j] = a[i][j]*ta-a[k][j]*tb;
                }
            }
        }
    }

  //  Debug();

    // 1. 无解的情况: 化简的增广阵中存在(0, 0, ..., a)这样的行(a != 0).
    for (i = k; i < equ; i++)
    { // 对于无穷解来说,如果要判断哪些是自由变元,那么初等行变换中的交换就会影响,则要记录交换.
        if (a[i][col] != 0) return -1;
    }
    // 2. 无穷解的情况: 在var * (var + 1)的增广阵中出现(0, 0, ..., 0)这样的行,即说明没有形成严格的上三角阵.
    // 且出现的行数即为自由变元的个数.
    if (k < var)
    {
        // 首先,自由变元有var - k个,即不确定的变元至少有var - k个.
        for (i = k - 1; i >= 0; i--)
        {
            // 第i行一定不会是(0, 0, ..., 0)的情况,因为这样的行是在第k行到第equ行.
            // 同样,第i行一定不会是(0, 0, ..., a), a != 0的情况,这样的无解的.
            free_x_num = 0; // 用于判断该行中的不确定的变元的个数,如果超过1个,则无法求解,它们仍然为不确定的变元.
            for (j = 0; j < var; j++)
            {
                if (a[i][j] != 0 && free_x[j]) free_x_num++, free_index = j;
            }
            if (free_x_num > 1) continue; // 无法求解出确定的变元.
            // 说明就只有一个不确定的变元free_index,那么可以求解出该变元,且该变元是确定的.
            temp = a[i][var];
            for (j = 0; j < var; j++)
            {
                if (a[i][j] != 0 && j != free_index) temp -= a[i][j] * x[j];
            }
            x[free_index] = temp / a[i][free_index]; // 求出该变元.
            free_x[free_index] = 0; // 该变元是确定的.
        }
        return var - k; // 自由变元有var - k个.
    }
    // 3. 唯一解的情况: 在var * (var + 1)的增广阵中形成严格的上三角阵.
    // 计算出Xn-1, Xn-2 ... X0.
    for (i = var - 1; i >= 0; i--)
    {
        temp = a[i][var];
        for (j = i + 1; j < var; j++)
        {
            if (a[i][j] != 0) temp -= a[i][j] * x[j];
        }
        if (temp % a[i][i] != 0) return -2; // 说明有浮点数解,但无整数解.
        x[i] = temp / a[i][i];
    }
    return 0;
}
int main(void)
{
    freopen("in.txt", "r", stdin);
    freopen("out.txt","w",stdout);
    int i, j;
    int equ,var;
    while (scanf("%d %d", &equ, &var) != EOF)
    {
        memset(a, 0, sizeof(a));
        for (i = 0; i < equ; i++)
        {
            for (j = 0; j < var + 1; j++)
            {
                scanf("%d", &a[i][j]);
            }
        }
//        Debug();
        int free_num = Gauss(equ,var);
        if (free_num == -1) printf("无解!\n");
   else if (free_num == -2) printf("有浮点数解,无整数解!\n");
        else if (free_num > 0)
        {
            printf("无穷多解! 自由变元个数为%d\n", free_num);
            for (i = 0; i < var; i++)
            {
                if (free_x[i]) printf("x%d 是不确定的\n", i + 1);
                else printf("x%d: %d\n", i + 1, x[i]);
            }
        }
        else
        {
            for (i = 0; i < var; i++)
            {
                printf("x%d: %d\n", i + 1, x[i]);
            }
        }
        printf("\n");
    }
    return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值