Python 关于GIL

  • GIL是Cpython解释器中使用的一种机制
  • 当前运行的线程持有GIL,GIL保证解释器当前只有一个线程
  • 只要一进行I/O操作就释放掉GIL
  • 对于绑定CPU 并且从不进行I/O操作的线程当做特例对待
  • 实质是互斥锁,即将并行变成串行
  • 每次执行一个python脚本,就产生一个独立的进程,所有开的线程都运行在这一个进程内
  • 所有线程共享进程数据,所有线程的任务都需要将任务的代码当做参数传给解释器的代码去执行。对于多个线程访问解释器的代码,加锁处理-GIL
GIL.acquire()
解释器的代码
GIL.release()
  • GIL保护的是解释器级的数据,保护用户自己的数据则需要自己加锁处理。
  • CPU是用来完成计算的,多CPU意味着可以有多个核并行完成计算,所以多核提升的是计算性能,每个CPU一旦遇到I/O,扔需要等待,所以CPU对I/0操作没用。
  • 进程可以利用多核,但是开销大,线程开销小,可是无法利用多核的优势,因为同一个进程中只有一个线程被执行,GIL锁控制只有一个线程拿到Cpython代码。
  • 总结:
    1、 单核计算机无论是计算密集型还是I/O密集型都是开多线程合适
    2、多核计算机:计算密集型开多进程,I/O密集型开多线程合适
    3、计算密集型:eg 金融分析
    I/O密集型:比如socket,爬虫和web
  • 多核下,性能测试,本机四核
    对于计算密集型多进程
from multiprocessing import Process
#from threading import Thread

import os,time

def work():
    res=0
    for i in range(100000000):
        res*=i
        
    
if __name__=='__main__':
    l=[]
    print('本机CPU核数%s'%(os.cpu_count()))
    start=time.time()
    for i in range(4):
        p=Process(target=work)  #开多进程
        l.append(p)
        p.start()
        
    for i in l:
        p.join()
        
    stop=time.time()
    
    print('mutiprocesss run time is %s' %(stop-start))

结果:
 本机CPU核数4
mutiprocesss run time is 10.67342233657837

计算密集型多线程

from threading import Thread

import os,time

def work():
    res=0
    for i in range(100000000):
        res*=i
        
    
if __name__=='__main__':
    l=[]
    print('本机CPU核数%s'%(os.cpu_count()))
    start=time.time()
    for i in range(4):
        p=Thread(target=work)  #开多线程
        l.append(p)
        p.start()
        
    for i in l:
        p.join()
        
    stop=time.time()
    
    print('mutiprocesss run time is %s' %(stop-start))

结果:
本机CPU核数4
mutiprocesss run time is 21.925345182418823
    

I/O密集型多进程

from multiprocessing import Process
#from threading import Thread

import os,time

def work():
    time.sleep(2)
    print('====>')
        
    
if __name__=='__main__':
    l=[]
    print('本机CPU核数%s'%(os.cpu_count()))
    start=time.time()
    for i in range(400):
        p=Process(target=work)  #开多进程
        l.append(p)
        p.start()
        
    for i in l:
        p.join()
        
    stop=time.time()
    
    print('mutiprocesss run time is %s' %(stop-start))
结果:
...
====>
====>
====>
====>
====>
====>
====>
====>
====>
====>
====>
====>
mutiprocesss run time is 36.55142903327942  #时间都浪费在创建进程了

I/O密集型多线程

from threading import Thread

import os,time

def work():
    time.sleep(2)
    print('====>')
        
    
if __name__=='__main__':
    l=[]
    print('本机CPU核数%s'%(os.cpu_count()))
    start=time.time()
    for i in range(400):
        p=Thread(target=work)  #开多进程
        l.append(p)
        p.start()
        
    for i in l:
        p.join()
        
    stop=time.time()
    
    print('mutiprocesss run time is %s' %(stop-start))
结果:
====>
====>
====>
====>
====>
====>
====>
====>
====>
====>
====>
====>
====>
mutiprocesss run time is 2.2711379528045654
====>
====>

思考:
I/O密集型的操作即使开多进程,四个进程也只能有四个线程在运行,因为有GIL锁的控制,每个CPU 中只有一个线程拿到了Cpython解释器的代码,所以开多进程优化效果不明显,有时不如不开多进程;I/0密集型的操作开多线程,因为线程开销小,可以实现多任务并发执行I/0任务。在执行I/0操作时,任务是都释放掉GIL锁的。计算密集型任务开多进程是在多核中并发,并且CPU是用来完成计算的,因此对于计算密集型任务使用多进程优化效果肯定比多线程(一个进程一个核)中好得多。

weixin073智慧旅游平台开发微信小程序+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
python017基于Python贫困生资助管理系统带vue前后端分离毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值