Leetcode 199. 二叉树的右视图

题目描述

给定一棵二叉树,想象自己站在它的右侧,按照从顶部到底部的顺序,返回从右侧所能看到的节点值。
在这里插入图片描述

C++

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */

 /*
 递归停止条件:节点为空
 返回什么: 右边可以看到的节点值
 本级递归干什么: 首先根节点一定能看到,左右子树递归,右子树返回的列表都能看见,对于左子树比右子树高,需要把左子树多的元素也加进来
 */
class Solution {
public:
    vector<int> rightSideView(TreeNode* root) {
        vector<int> res;
        if(root == nullptr)  return res;
        res.push_back(root->val);
        vector<int> templ;  //左子树返回的
        vector<int> tempr;
      
        templ=rightSideView(root->left);
        tempr=rightSideView(root->right);
        
        res.insert(res.end(),tempr.begin(),tempr.end());
        if(templ.size()>tempr.size()){
            for(int i=tempr.size();i<templ.size();i++){
                res.push_back(templ[i]);
            }
        }
        return res;
    }
};

以上是我的解法,但是时间和空间复杂度太高了

参考其他人

根结点 -> 右子树 -> 左子树」 的顺序访问, 就可以保证每层都是最先访问最右边的节点的。

(与先序遍历 「根结点 -> 左子树 -> 右子树」 正好相反,先序遍历每层最先访问的是最左边的节点)


class Solution {
    List<Integer> res = new ArrayList<>();

    public List<Integer> rightSideView(TreeNode root) {
        dfs(root, 0); // 从根节点开始访问,根节点深度是0
        return res;
    }

    private void dfs(TreeNode root, int depth) {
        if (root == null) {
            return;
        }
        // 先访问 当前节点,再递归地访问 右子树 和 左子树。
        if (depth == res.size()) {   // 如果当前节点所在深度还没有出现在res里,说明在该深度下当前节点是第一个被访问的节点,因此将当前节点加入res中。
            res.add(root.val);
        }
        depth++;
        dfs(root.right, depth);
        dfs(root.left, depth);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值