最小圆覆盖

题目链接:

https://www.luogu.org/problemnew/show/P1742

This is codes:

#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<iostream>
#include<iomanip>
#include<list>
#include<map>
#include<queue>
#include<sstream>
#include<stack>
#include<string>
#include<set>
#include<vector>
using namespace std;
#define PI acos(-1.0)
#define pppp cout<<endl;
#define EPS 1e-8
#define LL long long
#define ULL unsigned long long     //1844674407370955161
#define INT_INF 0x3f3f3f3f      //1061109567
#define LL_INF 0x3f3f3f3f3f3f3f3f //4557430888798830399
// ios::sync_with_stdio(false);
// 那么cin, 就不能跟C的 scanf,sscanf, getchar, fgets之类的一起使用了。
const int maxn=1e6+100;
struct Point
{
    double x,y;
    Point() {}
    Point(double x,double y):x(x),y(y) {}
} b[maxn];
Point O;
double R;
double pow_2(double x)//平方
{
    return x*x;
}
double dis(Point x,Point y)//两点距离
{
    return sqrt(pow_2(x.x-y.x)+pow_2(x.y-y.y));
}
bool incircle(Point x)//判断点是否在圆内
{
    if(dis(O,x)<=R)
        return true;
    return false;
}
Point solve(int i,int j,int k)
{
    double A=b[i].x-b[j].x;
    double B=b[i].y-b[j].y;
    double C=(pow_2(b[j].x)+pow_2(b[j].y)-pow_2(b[i].x)-pow_2(b[i].y))/2;
    double D=b[i].x-b[k].x;
    double E=b[i].y-b[k].y;
    double F=(pow_2(b[k].x)+pow_2(b[k].y)-pow_2(b[i].x)-pow_2(b[i].y))/2;

    double y=(F*A-C*D)/(B*D-E*A);
    double x=(F*B-C*E)/(A*E-B*D);
    return Point(x,y);
}
int main()
{
    int n;//点的个数
    scanf("%d",&n);
    for(int i=1; i<=n; i++)//坐标
        scanf("%lf%lf",&b[i].x,&b[i].y);
    random_shuffle(b+1,b+n+1);//打乱元素排列,一定要有
    R=0;
    for(int i=1; i<=n; i++)//O(n^2)的时间
    {
        if(!incircle(b[i]))
        {
            O.x=b[i].x;
            O.y=b[i].y;
            R=0;
            for(int j=1; j<i; j++)
            {
                if(!incircle(b[j]))
                {
                    O.x=(b[i].x+b[j].x)/2;
                    O.y=(b[i].y+b[j].y)/2;
                    R=dis(O,b[i]);
                    for(int k=1; k<j; k++)
                    {
                        if(!incircle(b[k]))
                        {
                            O=solve(i, j, k );
                            R=dis(b[i],O);
                        }
                    }
                }
            }
        }
    }
    printf("%.10lf\n",R);//半径

    printf("%.10lf %.10lf\n",O.x,O.y);//圆心


    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值