Ubuntu 20.04安装显卡驱动、CUDA、Miniconda和Pytorch(2024.09最新)-Ubuntu从零搭建深度学习环境

一、安装显卡驱动

1.1 查看显卡型号

lspci | grep -i nvidia

在这里插入图片描述

我们发现输出的信息中有Device 2230,可以根据这个信息查询显卡型号
查询网址:https://admin.pci-ids.ucw.cz/mods/PC/10de?action=help?help=pci

在这里插入图片描述

输入后点击Jump查询

在这里插入图片描述

我们发现显卡型号为RTX A6000

1.2 根据显卡型号选择驱动

英伟达驱动下载:https://www.nvidia.cn/Download/Find.aspx?lang=cn&QNF=1

根据需求,输入显卡型号操作系统语言,选择相应的驱动版本,我选择550.78这个版本。

在这里插入图片描述

1.3 获取下载链接

点击下载
在这里插入图片描述

点击【同意并开始下载

在这里插入图片描述
复制下载链接:https://cn.download.nvidia.cn/XFree86/Linux-x86_64/550.78/NVIDIA-Linux-x86_64-550.78.run
并使用wget在命令行下载:

wget https://cn.download.nvidia.cn/XFree86/Linux-x86_64/550.78/NVIDIA-Linux-x86_64-550.78.run

在这里插入图片描述

1.4 查看下载的显卡驱动安装文件

ll

在这里插入图片描述

1.5 更新软件列表和安装必要软件、依赖

sudo apt-get update
sudo apt-get install g++
sudo apt-get install gcc
sudo apt-get install make

1.6 卸载原有驱动

sudo apt-get remove --purge nvidia* 

1.7 禁用默认驱动

在安装NVIDIA驱动前,禁用系统自带显卡驱动nouveau
使用vim打开和修改文件,也可用gedit

sudo vim /etc/modprobe.d/blacklist.conf

在文件尾增加两行:

blacklist nouveau
options nouveau modeset=0

在这里插入图片描述
更新文件

sudo update-initramfs -u

此时必须重启电脑:

sudo reboot

1.8 安装lightdm显示管理器

sudo apt-get install lightdm

1.9 停止显示服务器

sudo telinit 3

1.10 在文本界面中,禁用X-window服务

sudo service gdm3 stop

1.11 安装驱动

# 授予执行权限
sudo chmod 777 NVIDIA-Linux-x86_64-550.78.run

# 执行安装命令
sudo ./NVIDIA-Linux-x86_64-550.78.run

1.12 检测显卡驱动是否安装成功

nvidia-smi

在这里插入图片描述

大功告成~

1.12 重启显示服务、恢复图像界面

sudo  service  gdm3 start
sudo telinit 5

二、安装CUDA

2.1 选择合适的CUDA版本

我显卡的驱动版本是550.78,可以安装CUDA 12版本。可根据自己显卡版本选择合适的CUDA版本:查询链接:https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
在这里插入图片描述

2.2 下载CUDA

下载页面链接:https://developer.nvidia.com/cuda-toolkit-archive
在这里插入图片描述
在这里插入图片描述

# 使用命令下载文件:
wget https://developer.download.nvidia.com/compute/cuda/12.1.0/local_installers/cuda_12.1.0_530.30.02_linux.run

在这里插入图片描述

# 使用命令查看文件下载:
ll

在这里插入图片描述

2.3 安装CUDA

sudo sh cuda_12.1.0_530.30.02_linux.run

稍等一会,会出现如下界面,输入:accept即可安装
在这里插入图片描述

接着会出现如下界面:

在这里插入图片描述
需要注意的是,上述过程我们已在步骤1安装显卡驱动,已无需再装,可通过键盘选择,取消驱动的安装。
再将光标通过键盘移至Install,开始安装:

在这里插入图片描述

2.4 环境变量配置

vim方式打开配置文件

sudo vim ~/.bashrc

在文件尾中加入以下两行:

export PATH="/usr/local/cuda-12.1/bin:$PATH"
export LD_LIBRARY_PATH="/usr/local/cuda-12.1/lib64:$LD_LIBRARY_PATH"

在这里插入图片描述
更新环境变量

source ~/.bashrc

2.5 检测CUDA是否安装成功

nvcc -V

在这里插入图片描述
命令行显示如上信息,表明安装成功!大功告成~

三、Miniconda

Anaconda简介:Anaconda 是一个用于科学计算的 Python 发行版,支持 Linux, Mac, Windows, 包含了众多流行的科学计算、数据分析的 Python 包。


AnacondaMiniconda的区别:Anaconda软件包大概500MB,安装后大概3-4G,base环境包括了conda管理器、Pyhon编译器、常用的包和Spyder IDE等;Miniconda软件包大概50MB,安装后大概300MB,base环境选择只包括conda管理器和Python编译器,其他的包需要通过conda命令安装。

3.1 下载Miniconda

官网链接https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/

在这里插入图片描述
右键选择“复制链接”,并使用wget命令在Ubuntu服务器下载:

wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/miniconda/Miniconda3-py38_23.11.0-1-Linux-x86_64.sh

在这里插入图片描述

3.2 安装Miniconda

(1)开始安装。输入以下命令后,敲击回车键

sudo bash Miniconda3-py38_23.11.0-1-Linux-x86_64.sh

在这里插入图片描述
(2)接受条款。按着Enter不松,直到出现条款,输入yes
在这里插入图片描述
(3) 输入安装路径后敲击回车键。我的安装路径为:/usr/local/miniconda
在这里插入图片描述
(4)最后敲击回车键
在这里插入图片描述

3.3 配置环境

(1)配置环境变量。修改/etc/profile文件,来配置环境,添加一行(根据自己的安装路径添加)

export PATH=/usr/local/miniconda/bin:$PATH

在这里插入图片描述
(2)注入环境。

source /etc/profile

在这里插入图片描述
(3) 验证是否安装成功

conda -V

在这里插入图片描述
若显示版本号,表明miniconda已安装成功!

四、安装Pytorch

4.1 选择合适Pytorch版本

链接:https://pytorch.org/get-started/previous-versions/
在这里插入图片描述
由于CUDA安装的版本是12.1,所以可以用Pytorch的v2.2.0版本

4.2 安装Pytorch

可用conda安装

conda install pytorch==2.2.0 torchvision==0.17.0 torchaudio==2.2.0 pytorch-cuda=12.1 -c pytorch -c nvidia

也可用pip安装

pip install torch==2.2.0 torchvision==0.17.0 torchaudio==2.2.0 --index-url https://download.pytorch.org/whl/cu121

五、关于安装cuDNN(这个坑以后再补)

cuDNN是一个基于CUDA的深度学习GPU加速库,可以提高深度学习模型在GPU上的训练速度。cuDNN不是必须安装的,但是一般会采用这个加速库。部分深度学习框架,如PyTorch,会自带预先编译的cuDNN,无需手动安装。后面我还需要安装Pytorch,所以cuDNN就没安装,需要安装的可以参考下面信息,但是不完整。

版本查看页面:https://developer.nvidia.com/cudnn-downloads
在这里插入图片描述

下载CUDA 12对应的cuDNN版本,这里我们选择8.9.0版本。点击该版本,显示如下,我们选择红框圈中的版本。

在这里插入图片描述

### STM32CubeMX Version 6.10.0 Download and Information For obtaining the specific version of STM32CubeMX, such as version 6.10.0, one should visit STMicroelectronics' official website or repository dedicated to software releases. The latest versions are typically available on the homepage; however, for older but specified versions like 6.10.0, navigating through the archive section might be necessary[^1]. Once at the site: - Search for "STM32CubeMX". - Navigate towards the downloads area. - Look specifically for archived versions where users can find a list of all released versions including detailed release notes that outline changes, improvements, bug fixes, etc., which is crucial when targeting an exact version number. Regarding installation after downloading, it follows standard procedures applicable across various operating systems. For integrating with development environments like MDK, ensuring corresponding device packs are installed remains critical. Device selection within tools like CubeMX requires having these packs because they provide support files needed by both IDEs (Integrated Development Environments) and configuration utilities alike[^2]. ```bash # Example command line instruction to check current version post-installation may vary based on OS stm32cubemx --version ``` --related questions-- 1. How does installing different device pack versions affect project compatibility? 2. What new features were introduced in STM32CubeMX from V4.17.0 to V6.10.0? 3. Can projects created in earlier versions of STM32CubeMX open seamlessly in later versions without issues? 4. Where can developers access comprehensive documentation about each STM32CubeMX update? 5. Is there any significant difference between using STM32CubeMX online versus offline modes?
评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值