问题及代码:
/*
* Copyright (c)2016,烟台大学计算机与控制工程学院
* All rights reserved.
* 文件名称:项目3.cpp
* 作 者:陈哲
* 完成日期:2016年11月3日
* 版 本 号:v1.0
*问题描述:假设二叉树采用二叉链存储结构存储,分别实现以下算法,并在程序中完成测试:
(1)计算二叉树节点个数;
(2)输出所有叶子节点;
(3)求二叉树b的叶子节点个数;
(4)设计一个算法Level(b,x,h),返回二叉链b中data值为x的节点的层数。
(5)判断二叉树是否相似(关于二叉树t1和t2相似的判断:①t1和t2都是空的二叉树,相似;
②t1和t2之一为空,另一不为空,则不相似;③t1的左子树和t2的左子树是相似的,且t1的右子树与t2的右子树是相似的,则t1和t2相似。)
*输入描述:无
*程序输出:测试数据
*/
头文件btree.h和源文件btree.cpp代码详见第十周项目1--二叉树算法库
(1)计算二叉树节点个数
主函数main.cpp代码:
#include <stdio.h>
#include "btree.h"
int Nodes(BTNode *b)
{
if (b==NULL)
return 0;
else
return Nodes(b->lchild)+Nodes(b->rchild)+1;
}
int main()
{
BTNode *b;
CreateBTNode(b,"A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))");
printf("二叉树节点个数: %d\n", Nodes(b));
DestroyBTNode(b);
return 0;
}
运算结果:
(2)输出所有叶子节点
主函数main.cpp代码:
#include <stdio.h>
#include "btree.h"
void DispLeaf(BTNode *b)
{
if (b!=NULL)
{
if (b->lchild==NULL && b->rchild==NULL)
printf("%c ",b->data);
else
{
DispLeaf(b->lchild);
DispLeaf(b->rchild);
}
}
}
int main()
{
BTNode *b;
CreateBTNode(b,"A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))");
printf("二叉树中所有的叶子节点是: ");
DispLeaf(b);
printf("\n");
DestroyBTNode(b);
return 0;
}
运算结果:
(3)求二叉树b的叶子节点个数
主函数main.cpp代码:
#include "btree.h"
int LeafNodes(BTNode *b) //求二叉树b的叶子节点个数
{
int num1,num2;
if (b==NULL)
return 0;
else if (b->lchild==NULL && b->rchild==NULL)
return 1;
else
{
num1=LeafNodes(b->lchild);
num2=LeafNodes(b->rchild);
return (num1+num2);
}
}
int main()
{
BTNode *b;
CreateBTNode(b,"A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))");
printf("二叉树b的叶子节点个数: %d\n",LeafNodes(b));
DestroyBTNode(b);
return 0;
}
运算结果:
(4)设计一个算法Level(b,x,h),返回二叉链b中data值为x的节点的层数
主函数main.cpp代码:
#include "btree.h"
int Level(BTNode *b,ElemType x,int h)
{
int l;
if (b==NULL)
return 0;
else if (b->data==x)
return h;
else
{
l=Level(b->lchild,x,h+1);
if (l==0)
return Level(b->rchild,x,h+1);
else
return l;
}
}
int main()
{
BTNode *b;
CreateBTNode(b,"A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))");
printf("值为\'K\'的节点在二叉树中出现在第 %d 层上n",Level(b,'K',1));
DestroyBTNode(b);
return 0;
}
运算结果:
(5)判断二叉树是否相似(关于二叉树t1和t2相似的判断:1)t1和t2都是空的二叉树,相似;
2)t1和t2之一为空,另一不为空,则不相似;3)t1的左子树和t2的左子树是相似的,
且t1的右子树与t2的右子树是相似的,则t1和t2相似。)
主函数main.cpp代码:
#include <stdio.h>
#include "btree.h"
int Like(BTNode *b1,BTNode *b2)
{
int like1,like2;
if (b1==NULL && b2==NULL)
return 1;
else if (b1==NULL || b2==NULL)
return 0;
else
{
like1=Like(b1->lchild,b2->lchild);
like2=Like(b1->rchild,b2->rchild);
return (like1 & like2);
}
}
int main()
{
BTNode *b1, *b2, *b3;
CreateBTNode(b1,"B(D,E(H(J,K(L,M(,N)))))");
CreateBTNode(b2,"A(B(D(,G)),C(E,F))");
CreateBTNode(b3,"u(v(w(,x)),y(z,p))");
if(Like(b1, b2))
printf("b1和b2相似\n");
else
printf("b1和b2不相似\n");
if(Like(b2, b3))
printf("b2和b3相似\n");
else
printf("b2和b3不相似\n");
DestroyBTNode(b1);
DestroyBTNode(b2);
DestroyBTNode(b3);
return 0;
}
运算结果:
知识点总结:
利用二叉树三种遍历思想解决实际问题。
学习心得:
对于代码有些不能理解,还需对三种遍历进行更深入的研究。