第十周项目3--利用二叉树遍历思想解决问题

问题及代码:

/*  
* Copyright (c)2016,烟台大学计算机与控制工程学院  
* All rights reserved.  
* 文件名称:项目3.cpp  
* 作    者:陈哲  
* 完成日期:2016年11月3日  
* 版 本 号:v1.0   
*问题描述:假设二叉树采用二叉链存储结构存储,分别实现以下算法,并在程序中完成测试: 
  (1)计算二叉树节点个数; 
  (2)输出所有叶子节点; 
  (3)求二叉树b的叶子节点个数; 
  (4)设计一个算法Level(b,x,h),返回二叉链b中data值为x的节点的层数。 
  (5)判断二叉树是否相似(关于二叉树t1和t2相似的判断:①t1和t2都是空的二叉树,相似;
    ②t1和t2之一为空,另一不为空,则不相似;③t1的左子树和t2的左子树是相似的,且t1的右子树与t2的右子树是相似的,则t1和t2相似。) 
*输入描述:无  
*程序输出:测试数据  
*/  


 

头文件btree.h和源文件btree.cpp代码详见第十周项目1--二叉树算法库

(1)计算二叉树节点个数

主函数main.cpp代码:

#include <stdio.h>
#include "btree.h"

int Nodes(BTNode *b)
{
    if (b==NULL)
        return 0;
    else
        return Nodes(b->lchild)+Nodes(b->rchild)+1;
}
int main()
{
    BTNode *b;
    CreateBTNode(b,"A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))");
    printf("二叉树节点个数: %d\n", Nodes(b));
    DestroyBTNode(b);
    return 0;
}


运算结果:

 

(2)输出所有叶子节点

主函数main.cpp代码:

#include <stdio.h>
#include "btree.h"

void DispLeaf(BTNode *b)
{
    if (b!=NULL)
    {
        if (b->lchild==NULL && b->rchild==NULL)
            printf("%c ",b->data);
        else
        {
            DispLeaf(b->lchild);
            DispLeaf(b->rchild);
        }
    }
}
int main()
{
    BTNode *b;
    CreateBTNode(b,"A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))");
    printf("二叉树中所有的叶子节点是: ");
    DispLeaf(b);
    printf("\n");
    DestroyBTNode(b);
    return 0;
}


运算结果:

 

(3)求二叉树b的叶子节点个数

主函数main.cpp代码:

#include "btree.h"

int LeafNodes(BTNode *b)    //求二叉树b的叶子节点个数
{
    int num1,num2;
    if (b==NULL)
        return 0;
    else if (b->lchild==NULL && b->rchild==NULL)
        return 1;
    else
    {
        num1=LeafNodes(b->lchild);
        num2=LeafNodes(b->rchild);
        return (num1+num2);
    }
}

int main()
{
    BTNode *b;
    CreateBTNode(b,"A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))");
    printf("二叉树b的叶子节点个数: %d\n",LeafNodes(b));
    DestroyBTNode(b);
    return 0;
}


 

运算结果:

 

(4)设计一个算法Level(b,x,h),返回二叉链b中data值为x的节点的层数

主函数main.cpp代码:

#include "btree.h"

int Level(BTNode *b,ElemType x,int h)
{
    int l;
    if (b==NULL)
        return 0;
    else if (b->data==x)
        return h;
    else
    {
        l=Level(b->lchild,x,h+1);
        if (l==0)
            return Level(b->rchild,x,h+1);
        else
            return l;
    }
}

int main()
{
    BTNode *b;
    CreateBTNode(b,"A(B(D,E(H(J,K(L,M(,N))))),C(F,G(,I)))");
    printf("值为\'K\'的节点在二叉树中出现在第 %d 层上n",Level(b,'K',1));
    DestroyBTNode(b);
    return 0;
}


运算结果:

 

(5)判断二叉树是否相似(关于二叉树t1和t2相似的判断:1)t1和t2都是空的二叉树,相似;

         2)t1和t2之一为空,另一不为空,则不相似;3)t1的左子树和t2的左子树是相似的,

          且t1的右子树与t2的右子树是相似的,则t1和t2相似。)

主函数main.cpp代码:

#include <stdio.h>
#include "btree.h"

int Like(BTNode *b1,BTNode *b2)
{
    int like1,like2;
    if (b1==NULL && b2==NULL)
        return 1;
    else if (b1==NULL || b2==NULL)
        return 0;
    else
    {
        like1=Like(b1->lchild,b2->lchild);
        like2=Like(b1->rchild,b2->rchild);
        return (like1 & like2);
    }
}

int main()
{
    BTNode *b1, *b2, *b3;
    CreateBTNode(b1,"B(D,E(H(J,K(L,M(,N)))))");
    CreateBTNode(b2,"A(B(D(,G)),C(E,F))");
    CreateBTNode(b3,"u(v(w(,x)),y(z,p))");
    if(Like(b1, b2))
        printf("b1和b2相似\n");
    else
        printf("b1和b2不相似\n");
    if(Like(b2, b3))
        printf("b2和b3相似\n");
    else
        printf("b2和b3不相似\n");
    DestroyBTNode(b1);
    DestroyBTNode(b2);
    DestroyBTNode(b3);
    return 0;
}


运算结果:

 

知识点总结:

利用二叉树三种遍历思想解决实际问题。

学习心得:

对于代码有些不能理解,还需对三种遍历进行更深入的研究。

 

 

 

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值