Leetcode 64. Minimum Path Sum

-题目-
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.

-思路-
按照之前一道类似的Unique Path的题目的思路来解,以二维数组记录到达每一个点所需要的最短路径长度,则状态转移方程就是f[i][j]=min(f[i-1][j], f[i][j-1])+grid[i][j].最后的结果存储在f[n-1][n-1]中。相较于之前的path这道题难度在于第一和第一行的初始化,感觉用现在的代码初始化很大程度上拉低了效率,因此这道题目前的答案其实还需要改进。

-代码-

class Solution {
public:
    int minPathSum(vector<vector<int>>& grid) {
        if(grid.size() == 0) return 0; 
        vector<vector<int> > min_path(grid.size()); 
        for(int i = 0; i < grid.size(); i++) {
            min_path[i].resize(grid[i].size(), 0); 
        }
        min_path[0][0] = grid[0][0]; 
        for(int i = 1; i < grid.size(); i++) {
            for(int j = 0; j <= i; j++) 
                min_path[i][0] += grid[j][0]; 
        }
        for(int i = 1; i < grid[0].size(); i++) {
            for(int j = 0; j <= i; j++) {
                min_path[0][i] += grid[0][j]; 
            }
        }
        for(int i = 1; i < grid.size(); i++) {
            for(int j = 1; j < grid[i].size(); j++) {
                min_path[i][j] = min(min_path[i][j-1], min_path[i-1][j])+grid[i][j]; 
            }
        }
        return min_path[grid.size()-1][grid[0].size()-1]; 
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值