图
一、图的相关概念
图的定义:图是由顶点的有穷非空集合和顶点之间的边的集合组成,通常表示为:G(V,E),其中,G表示一个图,V是图G中顶点的集合,E是图G中边的集合。
无向边:若顶点Vi 到Vj 的边没有方向,则称这条边为无向边,用无序偶对(Vi ,Vj)来表示。
如果图中任意两个顶点之间的边都是无向边,则称该图为无向图。
有向边:若从顶点Vi 到Vj的边有方向,则称这条边为有向边,也称为弧。用有序偶对(Vi ,Vj)来表示。Vi称为弧尾,Vj称为弧头。
如果图中任意顶点之间的边都是有向边,则称该图为有向图。
简单图:在图中,若不存在顶点到其自身的边,且同一条边不重复出现,则称这样的图为简单图。
无向完全图:在无向图中,如果任意两个顶点之间都存在边,则称该图为无向完全图。含有n个顶点的无向完全图有n(n-1)/2条边。
有向完全图:在有向图中,如果任意两个顶点之间都存在方向互为相反的两条弧,则称该图为有向完全图。含有n个顶点的有向完全图有n(n-1)条边。
因此,对于有n个顶点和e条边数的图,无向图0<=e<=n(n-1)/2,有向图0<=e<=n(n-1)。
有很少条边或弧的图称为稀疏图,反之称为稠密图。
路径的长度是路径上的边或弧的数目。
第一个顶点到最后一个顶点相同路径称为回路或环。序列中顶点不重复出现的路径称为简单路径。除了第一个顶点和最后一个顶点之外,其余顶点不重复出现的回路,称为简单回路或简单环。
连通图相关术语
在无向图G中,如果从顶点v到顶点w有路径,则称v和w是相通的。如果对图中任意两个顶点Vi和Vj 属于E,则两个顶点是连通的,则称G是连通图。如下图1,它的顶点A都顶点B、C、D都是连通的,但显然顶点A与顶点E或F就无路径,因此不能算是连通图。而图2,顶点A、B、C、D相互都是连通的,所以它本身是连通图。
无向图中的极大连通子图称为连通分量。注意连通分量的概念,它强调:
(1)要是子图;
(2)子图要是连通的;
(3)连通子图含有极大顶点数;
(4)具有极大顶点树的连通子图包含依附于这些顶点的所有边。
在有向图G中,如果对于每一对Vi和Vj 属于顶点集V,Vi不等于Vj ,从Vi到Vj和从Vj到Vi都存在路径,则称G是强连通图。有向图中的极大强连通子图称做有向图的强连通分量。
所谓的一个连通图的生成树是一个极小的连通子图,它含有图中全部的n个顶点,但只有足以构成一棵树的n-1条边。
***二、图的定义与术语总结***
图按照有无方向分为无向图和有向图。无向图由顶点和边构成,有向图由顶点和弧构成。弧有弧头和弧尾之分。
图按照边或弧的多少分为稀疏图和稠密图。如果任意两个顶点之间都存在边叫完全图,有向的叫有向完全图。若无重复的边或顶点到自身的边则叫简单图。
图中顶点之间有邻接点、依附的概念。无向图顶点的边数叫做度,有向图顶点分为入度和出度。
图上的边或弧带权则称为网。
图中顶点间存在路径,两顶点存在路径则说明是连通的,如果路径最终回到起始点则称为环当中不重复的叫简单路径。若任意两顶点都是连通的,则图就是连通图,有向则称为环,当中不重复叫简单路径。若任意两顶点都是连通的,则图就是连通图,有向则称强连通图。图中有子图,若子图极大连通则就是连通分量,有向的则称为强连通分量。
无向图中连通且n个顶点n-1条边叫生成树。有向图中一顶点的入度为0其余顶点的入度为1的叫有向树。一个有向图由若干棵有向树构成生成森林。
图的存储结构及实现
邻接矩阵
逻辑结构分为两部分:V和E集合。因此,用一个一维数组存放图中所有顶点数据;用一个二维数组存放顶点间关系(边或弧)的数据,这个二维数组称为邻接矩阵。邻接矩阵又分为有向图邻接矩阵和无向图邻接矩阵
定义
邻接矩阵(Adjacency Matrix):是表示顶点之间相邻关系的矩阵。设G=(V,E)是一个图,其中V={v1,v2,…,vn}。G的邻接矩阵是一个具有下列性质的n阶方阵:
①对无向图而言,邻接矩阵一定是对称的,而且主对角线一定为零(在此仅讨论无向简单图),副对角线不一定为0,有向图则不一定如此。
②在无向图中,任一顶点i的度为第i列(或第i行)所有非零元素的个数,在有向图中顶点i的出度为第i行所有非零元素的个数,而入度为第i列所有非零元素的个数。
③用邻接矩阵法表示图共需要n^2个空间,由于无向图的邻接矩阵一定具有对称关系,所以扣除对角线为零外,仅需要存储上三角形或下三角形的数据即可,因此仅需要n(n-1)/2个空间。
特点
无向图的邻接矩阵一定是对称的,而有向图的邻接矩阵不一定对称。因此,用邻接矩阵来表示一个具有n个顶点的有向图时需要n^2个单元来存储邻接矩阵;对有n个顶点的无向图则只存入上(下)三角阵中剔除