题目信息:
最大和
时间限制:
1000 ms | 内存限制:
65535 KB
难度:
5
-
描述
-
给定一个由整数组成二维矩阵(r*c),现在需要找出它的一个子矩阵,使得这个子矩阵内的所有元素之和最大,并把这个子矩阵称为最大子矩阵。
例子:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
其最大子矩阵为:9 2
-4 1
-1 8
其元素总和为15。-
输入
-
第一行输入一个整数n(0<n<=100),表示有n组测试数据;
每组测试数据:
第一行有两个的整数r,c(0<r,c<=100),r、c分别代表矩阵的行和列;
随后有r行,每行有c个整数;
输出
- 输出矩阵的最大子矩阵的元素之和。 样例输入
-
1 4 4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
样例输出
-
15
-
第一行输入一个整数n(0<n<=100),表示有n组测试数据;
二维的求子串和。所求的最大子矩阵上边界可以为for(i=1;i<=r;i++),下边界可以为for(j=i;j<=r;j++),每一种情况都看成一种一维的求子串和,然后求其中最大的值。
代码部分:
#include <stdio.h>
#include <string.h>
int main()
{
int data[105][105];
int n,r,c,i,j,k,sum,max,t;
scanf("%d",&n);
while(n--)
{
scanf("%d%d",&r,&c);
memset(data,0,sizeof(data));
for(i=1;i<=r;i++)
{
for(j=1;j<=c;j++)
{
scanf("%d",&data[i][j]);
data[i][j]+=data[i-1][j];
}
}
max=data[1][1];
for(i=1;i<=r;i++)
{
for(j=i;j<=r;j++)
{
sum=0;
for(k=1;k<=c;k++)
{
t=data[j][k]-data[i-1][k];
if(sum<0)
sum=t;
else
sum+=t;
if(sum>max)
max=sum;
}
}
}
printf("%d\n",max);
}
return 0;
}