POJ 1094 Sorting It All Out

Sorting It All Out
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 31877 Accepted: 11086

Description

An ascending (上升的) sorted sequence (序列) of distinct (明显的) values is one in which some form of a less-than operator is used to order the elements (基础) from smallest to largest. For example, the sorted sequence A, B, C, D implies (意味) that A < B, B < C and C < D. in this problem, we will give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified (指定) or not.

Input

Input (投入) consists of multiple problem instances (实例). Each instance starts with a line containing two positive (积极的) integers (整数) n and m. the first value indicated (表明) the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will be the first n characters of the uppercase (以大写字母印刷) alphabet (字母表). The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character "<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.

Output

For each problem instance, output (输出) consists of one line. This line should be one of the following three:

Sorted sequence (序列) determined after xxx relations: yyy...y.
Sorted sequence cannot be determined.
Inconsistency (不一致) found after xxx relations.

where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending (上升的) sequence.

Sample Input

4 6
A<B
A<C
B<C
C<D
B<D
A<B
3 2
A<B
B<A
26 1
A<Z
0 0

Sample Output

Sorted sequence determined after 4 relations: ABCD.
Inconsistency found after 2 relations.
Sorted sequence cannot be determined.

该题题意明确,就是给定一组字母的大小关系判断他们是否能组成唯一的拓扑序列。是典型的拓扑排序,拓扑排序可以用栈来实现,每次入栈的是入度为0的节点。但输出格式上却有三种形式:
1.该字母序列有序,并依次输出;
2.该序列不能判断是否有序;
3.该序列字母次序之间有矛盾,即有环存在。
而这三种形式的判断是有顺序的:先判断是否有环(3),再判断是否有序(1),最后才能判断是否能得出结果(2)。注意:对于(2)必须遍历完整个图,而(1)和(3)一旦得出结果,对后面的输入就不用做处理了。



#include <stdio.h>
#include <string.h>
int N, M;
int map[30][30];
int indegree[30];
int in[30];
int order[30];
int TopoSort()
{
	memcpy(in, indegree, sizeof(indegree));
	int cas = 1, len = 0, pos, num, i, j;
	for(i = 1; i <= N; i++)
	{
		num = 0;
		for(j = 1; j <= N; j++)
		{
			if(in[j] == 0)
			{
				num++;
				pos = j;
			}
		}
		if(num == 0) return 0;
		if(num > 1) cas = -1;
		order[len++] = pos;
		in[pos] = -1;
		for(j = 1; j <= N; j++)
			if(map[pos][j] == 1)
				in[j]--;
	}
	return cas;
}
int main()
{
	int i, j, cas, x, y;
	bool done;
	char s[5];
	while(scanf("%d%d", &N, &M) != EOF && N && M)
	{
		done = false;
		memset(map, 0, sizeof(map));
		memset(indegree, 0, sizeof(indegree));
		for(i = 1; i <= M; i++)
		{
			scanf("%s", s);
			if(done) continue;
			x = s[0] - 'A' + 1;
			y = s[2] - 'A' + 1;
			if(map[y][x] == 1)
			{
				done = true;
				printf("Inconsistency found after %d relations.\n", i);
				continue;
			}
			map[x][y] = 1;
			indegree[y]++;
			cas = TopoSort();
			if(cas == 1)
			{
				printf("Sorted sequence determined after %d relations: ", i);
				for(j = 0; j < N; j++)
					printf("%c", order[j] + 'A' - 1);
				printf(".\n");
				done = true;
			}
			else if(cas == 0)
			{
				printf("Inconsistency found after %d relations.\n", i);
				done = true;
			}
		}
		if(!done)
			printf("Sorted sequence cannot be determined.\n");
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值