在大模型开发领域,开发者们通常偏好使用NVIDIA显卡,这主要归功于NVIDIA显卡对CUDA技术的支持。CUDA(Compute Unified Device Architecture)是NVIDIA推出的一种并行计算架构,允许软件开发者和软件工程师利用NVIDIA GPU进行通用计算。
几乎所有现代的NVIDIA GPU都配备了CUDA核心,从消费级的GeForce系列到专业级的Quadro和Tesla系列。这些CUDA核心能够执行成千上万个并行线程,极大地提高了计算效率和速度,特别是在处理复杂的数学和科学计算时。因此,CUDA技术在科学计算、机器学习、深度学习等领域得到了广泛的应用。
CUDA技术允许开发者直接访问GPU的虚拟指令集和并行计算元素,使得能够使用C、C++以及其他支持的编程语言来开发GPU加速应用。通过CUDA,开发者可以将CPU(中央处理器)上运行的应用程序中的计算密集型部分迁移到GPU上执行,从而释放CPU资源来处理其他任务或进一步提高应用程序的性能。
CUDA架构提供了几个关键的并行编程模型和API:
- 核函数(Kernel):在GPU上并行执行的C/C++函数。
- 线程层次结构:CUDA定义了一套灵活的线程组织结构,包括网格、块和线程,使得开