sdfzyhx的博客

试问岭南应不好,却道,此心安处是吾乡。

poj2167 Irrelevant Elements

Description Young cryptoanalyst Georgie is investigating different
schemes of generating random integer numbers ranging from 0 to m - 1.
He thinks that standard random number generators are not good enough,
so he has invented his own scheme that is intended to bring more
randomness into the generated numbers. First, Georgie chooses n and
generates n random integer numbers ranging from 0 to m - 1. Let the
numbers generated be a1, a2, … , an. After that Georgie calculates
the sums of all pairs of adjacent numbers, and replaces the initial
array with the array of sums, thus getting n - 1 numbers: a1 + a2, a2
+ a3, … , an-1 + an. Then he applies the same procedure to the new array, getting n - 2 numbers. The procedure is repeated until only one
number is left. This number is then taken modulo m. That gives the
result of the generating procedure. Georgie has proudly presented this
scheme to his computer science teacher, but was pointed out that the
scheme has many drawbacks. One important drawback is the fact that the
result of the procedure sometimes does not even depend on some of the
initially generated numbers. For example, if n = 3 and m = 2, then the
result does not depend on a2. Now Georgie wants to investigate this
phenomenon. He calls the i-th element of the initial array irrelevant
if the result of the generating procedure does not depend on ai. He
considers various n and m and wonders which elements are irrelevant
for these parameters. Help him to find it out.

Input Input contains n and m (1 <= n <= 100 000, 2 <= m <= 109).

Output On the first line of the output print the number of irrelevant
elements of the initial array for given n and m. On the second line
print all such i that i-th element is irrelevant. Numbers on the
second line must be printed in the ascending order and must be
separated by spaces.

在纸上推一推可以发现,最后得到的每个元素的系数恰好是杨辉三角的第n行。另外很容易看出,一个元素是无关的,当且仅当他的系数是m的倍数。
于是问题就变成了求C(n-1,0),C(n-1,1)..C(n-1,n-1)中有多少是m的倍数。
很容易想到一种错误的做法,直接用C(n,k)=n!/(n-k)!k!在模m下计算。因为m不一定是质数,所以除数的逆并不一定存在。
可以利用递推式C(n,k)=C(n,k-1)*(n-k+1)/k进行计算,根据唯一分解定理,只要对每个m的质因数的指数进行加减即可。

#include<cstdio>
#include<cstring>
#include<cmath>
int m,n,a[1000010],p[1000010],now[1000010],ans[1000010];
int main()
{
    int i,j,k,x,y,z,tot=0,cnt=0;
    bool flag;
    scanf("%d%d",&n,&m);
    x=sqrt(m+0.5);
    for (i=2;i<=x;i++)
      if (m%i==0)
      {
        a[++tot]=i;
        while (m%i==0)
        {
            m/=i;
            p[tot]++;
        }
      }
    if (m>1)
    {
        a[++tot]=m;
        p[tot]=1;
    }
    for (i=1;i<n-1;i++)
    {
        x=n-i;
        y=i;
        for (j=1;j<=tot;j++)
          while (x%a[j]==0)
          {
            x/=a[j];
            now[j]++;
          }
        for (j=1;j<=tot;j++)
          while (y%a[j]==0)
          {
            y/=a[j];
            now[j]--;
          }
        flag=1;
        for (j=1;j<=tot;j++)
          if (p[j]>now[j])
          {
            flag=0;
            break;
          }
        if (flag) ans[++cnt]=i+1;
    }
    printf("%d\n",cnt);
    for (i=1;i<=cnt;i++)
      printf("%d%c",ans[i],i==cnt?'\n':' ');
}
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载,欢迎添加友链。 https://blog.csdn.net/sdfzyhx/article/details/52368581
个人分类: 数学 poj
上一篇巴蜀2830 数列
下一篇【Codeforces Round #369 (Div. 2)】Codeforces 711A Bus to Udayland
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭