题目描述
一个点每过一个单位时间就会向四个方向扩散一个距离,如图。
两个点a、b连通,记作e(a,b),当且仅当a、b的扩散区域有公共部分。连通块的定义是块内的任意两个点u、v都必定存在路径e(u,a0),e(a0,a1),…,e(ak,v)。给定平面上的n给点,问最早什么时刻它们形成一个连通块。
输入输出格式 输入格式:第一行一个数n,以下n行,每行一个点坐标。
【数据规模】
对于20%的数据,满足1≤N≤5; 1≤X[i],Y[i]≤50;
对于100%的数据,满足1≤N≤50; 1≤X[i],Y[i]≤10^9。
输出格式:
一个数,表示最早的时刻所有点形成连通块。
二分所用时间,然后问题就变成了判断图是否连通。dfs一遍就可解决。
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int xx[60],yy[60],n,mid;
bool vis[60];
int dis(int u,int v)
{
return abs(xx[u]-xx[v])+abs(yy[u]-yy[v]);
}
void dfs(int u)
{
int v;
vis[u]=1;
for (v=1;v<=n;v++)
if (!vis[v]&&dis(u,v)<=mid*2)
dfs(v);
}
bool ok()
{
int i;
memset(vis,0,sizeof(vis));
dfs(1);
for (i=1;i<=n;i++)
if (!vis[i])
return 0;
return 1;
}
int main()
{
int i,l,r;
scanf("%d",&n);
for (i=1;i<=n;i++)
scanf("%d%d",&xx[i],&yy[i]);
l=0;
r=2e9;
while (l<r)
{
mid=(l+r)/2;
if (ok()) r=mid;
else l=mid+1;
}
printf("%d\n",l);
}