洛谷 P1661 扩散

题目描述

一个点每过一个单位时间就会向四个方向扩散一个距离,如图。

两个点a、b连通,记作e(a,b),当且仅当a、b的扩散区域有公共部分。连通块的定义是块内的任意两个点u、v都必定存在路径e(u,a0),e(a0,a1),…,e(ak,v)。给定平面上的n给点,问最早什么时刻它们形成一个连通块。

输入输出格式

输入格式:

第一行一个数n,以下n行,每行一个点坐标。

【数据规模】

对于20%的数据,满足1≤N≤5; 1≤X[i],Y[i]≤50;

对于100%的数据,满足1≤N≤50; 1≤X[i],Y[i]≤10^9。

输出格式:

一个数,表示最早的时刻所有点形成连通块。

输入输出样例

输入样例#1:

20 05 5

输出样例#1:

5


这是今天模拟赛的t3,哈哈,似乎觉得有点***。
说正题,首先发现可以宽搜,但是数据范围1e9,算了吧。
发现很想最小生成树的题目,在各点之间连边,边权就是曼哈顿距离。
伪证明:算了,一会吧,显然成立啊。

#include<algorithm>
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
int n,m,ans,f[55];
struct node
{
	int x,y;
}a[55];
struct edge
{
	int x,y,dis;
}v[2505];
bool cmp(edge c,edge d)
{
	return c.dis<d.dis;
}
int fnd(int x)
{
	if(f[x]!=x)
		f[x]=fnd(f[x]);
	return f[x];
}
int main()
{
	scanf("%d",&n);
	for(int i=1;i<=n;i++)
		scanf("%d%d",&a[i].x,&a[i].y);
	for(int i=1;i<=n;i++)
		for(int j=i+1;j<=n;j++)
		{
			++m;
			v[m].x=i;
			v[m].y=j;
			v[m].dis=ceil((double)(abs(a[i].x-a[j].x)+abs(a[i].y-a[j].y))/2);
		}
	sort(v+1,v+m+1,cmp);
	for(int i=1;i<=n;i++)
		f[i]=i;
	for(int i=1;i<=m;i++)
		if(fnd(v[i].x)!=fnd(v[i].y))
		{
			f[fnd(v[i].y)]=fnd(v[i].x);
			ans=max(ans,v[i].dis);
		}
	printf("%d\n",ans);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值