题目描述
一个点每过一个单位时间就会向四个方向扩散一个距离,如图。
两个点a、b连通,记作e(a,b),当且仅当a、b的扩散区域有公共部分。连通块的定义是块内的任意两个点u、v都必定存在路径e(u,a0),e(a0,a1),…,e(ak,v)。给定平面上的n给点,问最早什么时刻它们形成一个连通块。
输入输出格式
输入格式:第一行一个数n,以下n行,每行一个点坐标。
【数据规模】
对于20%的数据,满足1≤N≤5; 1≤X[i],Y[i]≤50;
对于100%的数据,满足1≤N≤50; 1≤X[i],Y[i]≤10^9。
输出格式:一个数,表示最早的时刻所有点形成连通块。
输入输出样例
输入样例#1:
20 05 5
输出样例#1:
5
这是今天模拟赛的t3,哈哈,似乎觉得有点***。
说正题,首先发现可以宽搜,但是数据范围1e9,算了吧。
发现很想最小生成树的题目,在各点之间连边,边权就是曼哈顿距离。
伪证明:算了,一会吧,显然成立啊。
#include<algorithm>
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std;
int n,m,ans,f[55];
struct node
{
int x,y;
}a[55];
struct edge
{
int x,y,dis;
}v[2505];
bool cmp(edge c,edge d)
{
return c.dis<d.dis;
}
int fnd(int x)
{
if(f[x]!=x)
f[x]=fnd(f[x]);
return f[x];
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d%d",&a[i].x,&a[i].y);
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++)
{
++m;
v[m].x=i;
v[m].y=j;
v[m].dis=ceil((double)(abs(a[i].x-a[j].x)+abs(a[i].y-a[j].y))/2);
}
sort(v+1,v+m+1,cmp);
for(int i=1;i<=n;i++)
f[i]=i;
for(int i=1;i<=m;i++)
if(fnd(v[i].x)!=fnd(v[i].y))
{
f[fnd(v[i].y)]=fnd(v[i].x);
ans=max(ans,v[i].dis);
}
printf("%d\n",ans);
return 0;
}