uva12633 Super Rooks on Chessboard

137 篇文章 0 订阅

我们需要找到一个把所有同一对角线的方格放到一起的方法。把列反一下就可以把同一对角线的看成 x+y 相同的位置。把没有被覆盖的行和列卷积一下就得到了每个对角线上没有被行或者列覆盖的点的个数。把没有被覆盖的对角线累加上即可。

#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
#define LL long long
const int maxn=300010;
const double pi=acos(-1);
struct Complex
{
    double x,y;
    Complex operator + (const Complex &c) const
    {
        return (Complex){x+c.x,y+c.y};
    }
    Complex operator - (const Complex &c) const
    {
        return (Complex){x-c.x,y-c.y};
    }
    Complex operator * (const Complex &c) const
    {
        return (Complex){x*c.x-y*c.y,x*c.y+y*c.x};
    }
}a[maxn],b[maxn],w[maxn],t1,t2;
int visr[maxn],visc[maxn],vis[maxn],rev[maxn],
l,m,r,c,n;
void fft(Complex *a,int fl)
{
    int x;
    for (int i=0;i<l;i++)
        if (rev[i]>i)
            swap(a[i],a[rev[i]]);
    for (int i=1;i<=m;i++)
        for (int j=0;j<l;j+=(1<<i))
        {
            x=0;
            for (int k=j;k<j+(1<<i-1);k++)
            {
                t1=a[k];
                t2=a[k+(1<<i-1)];
                a[k]=t1+w[x]*t2;
                a[k+(1<<i-1)]=t1-w[x]*t2;
                x+=fl*(1<<m-i);
                if (x<0) x+=1<<m;
            }
        }
}
LL solve()
{
    int x,y;
    LL ans=0;
    scanf("%d%d%d",&r,&c,&n);
    memset(visr,0,sizeof(visr));
    memset(visc,0,sizeof(visc));
    memset(vis,0,sizeof(vis));
    memset(a,0,sizeof(a));
    memset(b,0,sizeof(b));
    memset(rev,0,sizeof(rev));
    for (int i=1;i<=n;i++)
    {
        scanf("%d%d",&x,&y);
        x--;
        y=c-y;
        vis[x+y]=visr[x]=visc[y]=1;
    }
    for (int i=0;i<r;i++) a[i]=(Complex){1-visr[i],0};
    for (int i=0;i<c;i++) b[i]=(Complex){1-visc[i],0};
    m=0;
    while ((1<<m)<r+c-1) m++;
    l=1<<m;
    w[0]=(Complex){1,0};
    w[1]=(Complex){cos(2*pi/l),sin(2*pi/l)};
    for (int i=2;i<l;i++)
    {
        w[i]=w[i/2]*w[i/2];
        if (i&1) w[i]=w[i]*w[1];
    }
    for (int i=0;i<l;i++)
        for (int j=0;j<m;j++)
            rev[i]|=((i>>j)&1)<<m-j-1;
    fft(a,1);
    fft(b,1);
    for (int i=0;i<l;i++) a[i]=a[i]*b[i];
    fft(a,-1);
    for (int i=0;i<l;i++)
        if (!vis[i])
            ans+=int(a[i].x/l+0.5);
    return ans;
}
int main()
{
    //freopen("in","r",stdin);
    int T;
    scanf("%d",&T);
    for (int K=1;K<=T;K++) printf("Case %d: %lld\n",K,solve());
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值