UVA12633 Super Rooks on Chessboard FFT

https://onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4358
在这里插入图片描述
题目大意: T T T组数据,每组数据有一个 n ∗ m n*m nm的矩阵,上面有 n u m num num个超级车,每个超级车可以攻击同一行、同一列、同一主对角线上的任意方块,问这个矩阵中有多少个方块没有被攻击。

思路:如果只考虑行列的话,设有 n r nr nr行未被攻击, n c nc nc列未被攻击,那么答案就是 r c ∗ n c rc*nc rcnc,那么加上主对角线的话,用这个值减去主对角线上被攻击的方块数就可以了,关键在于如果计算主对角线上被攻击的方块。我们设左上角为 ( 0 , 0 ) (0,0) (0,0),向下行数逐渐递增,向右列数逐渐递增,那么对于坐标 ( x , y ) (x,y) (x,y),其主对角线的编号为 x + m − y x+m-y x+my,考虑构造两个多项式,(1)针对于行的多项式: R ( x ) = ∑ i = 1 n x r i R(x)=\sum_{i=1}^{n} x^{r_i} R(x)=i=1nxri,如果第 r i r_i ri行未被攻击,该项系数为 1 1 1,否则系数为 0 0 0;(2)针对与列的多项式: C ( x ) = ∑ i = 1 m x − c i C(x)=\sum_{i=1}^{m} x^{{-c_i}} C(x)=i=1mxci(为了避免指数为负数,可以乘上 x m x^m xm),如果第 c i c_i ci列未被攻击,则 m − c i m-c_i mci项系数为 1 1 1,否则系数为 0 0 0。然后计算这两个多项式的乘积(利用 F F T FFT FFT),得到多项式 D ( x ) D(x) D(x),那么该多项式指数为 i i i的那一项的系数的含义就是:编号为 i i i的主对角线中没有被攻击的方块数,至此聪明的同学可能想到下一步要做什么了,遍历主对角线的编号,如果某条主对角线被标记过(也就是说这条对角线被攻击了),用刚才计算的贡献减去其对应的系数即可。这里有点绕,看代码会好理解很多。

#include<bits/stdc++.h>
using namespace std;        //FFT模板
typedef long long ll;

const int maxn=5e4+5;

struct Complex
{
    double x,y;
    Complex(double dx=0,double dy=0)
    {
        x=dx;
        y=dy;
    }
};

Complex operator +(Complex a,Complex b)
{
    return Complex(a.x+b.x,a.y+b.y);
}
Complex operator -(Complex a,Complex b)
{
    return Complex(a.x-b.x,a.y-b.y);
}
Complex operator *(Complex a,Complex b)
{
    return Complex(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);
}

const double pi=acos(-1.0); //PI
int limit=1,bit=0;
int wz[maxn<<2];
Complex a[maxn<<2],b[maxn<<2];
bool R[maxn],C[maxn],D[maxn<<1];//标记某一行、列、主对角线上 是否有超级车

void FFT(Complex *A,int inv)
{
    for(int i=0;i<limit;i++)
        if(i<wz[i])
            swap(A[i],A[wz[i]]);
    for(int mid=1;mid<limit;mid<<=1)
    {
        Complex wn(cos(pi/mid),inv*sin(pi/mid));
        for(int i=0;i<limit;i+=mid<<1)
        {
            Complex w(1,0);
            for(int j=0;j<mid;j++,w=w*wn)
            {
                Complex t1=A[i+j];
                Complex t2=w*A[i+mid+j];
                A[i+j]=t1+t2;
                A[i+mid+j]=t1-t2;
            }
        }
    }
}

int main()
{
    int t,n,m,num,times=0;
    scanf("%d",&t);
    while(t--)
    {
        memset(a,0,sizeof(a));
        memset(b,0,sizeof(b));
        memset(R,0,sizeof(R));
        memset(C,0,sizeof(C));
        memset(D,0,sizeof(D));
        scanf("%d %d %d",&n,&m,&num);
        limit=1,bit=0;
        int len=n+m;
        while(limit<=len)
        {
            limit<<=1;
            bit++;
        }
        for(int i=0;i<limit;i++)
            wz[i]=(wz[i>>1]>>1)|((i&1)<<(bit-1));
        int x,y;
        for(int i=0;i<num;i++)
        {
            scanf("%d %d",&x,&y);//读入超级车的坐标
            R[x]=C[y]=D[x+m-y]=1;//记录 行 列 主对角线
        }
        ll nr=0,nc=0;
        for(int i=1;i<=n;i++)
            if(!R[i])   //没有被攻击的行
                ++nr,a[i].x=1;
        for(int i=1;i<=m;i++)
            if(!C[i])  //没有被攻击的列
                ++nc,b[m-i]=1;
        FFT(a,1);
        FFT(b,1);
        for(int i=0;i<limit;i++)
            a[i]=a[i]*b[i];
        FFT(a,-1);
        ll ans=nr*nc;
        int MAX=n+m;
        for(int i=1;i<n+m;i++)
            if(D[i]) //被攻击的主对角线
                ans-=(ll)(a[i].x/limit+0.5);
        printf("Case %d: %lld\n",++times,ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值