https://onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4358
题目大意:
T
T
T组数据,每组数据有一个
n
∗
m
n*m
n∗m的矩阵,上面有
n
u
m
num
num个超级车,每个超级车可以攻击同一行、同一列、同一主对角线上的任意方块,问这个矩阵中有多少个方块没有被攻击。
思路:如果只考虑行列的话,设有 n r nr nr行未被攻击, n c nc nc列未被攻击,那么答案就是 r c ∗ n c rc*nc rc∗nc,那么加上主对角线的话,用这个值减去主对角线上被攻击的方块数就可以了,关键在于如果计算主对角线上被攻击的方块。我们设左上角为 ( 0 , 0 ) (0,0) (0,0),向下行数逐渐递增,向右列数逐渐递增,那么对于坐标 ( x , y ) (x,y) (x,y),其主对角线的编号为 x + m − y x+m-y x+m−y,考虑构造两个多项式,(1)针对于行的多项式: R ( x ) = ∑ i = 1 n x r i R(x)=\sum_{i=1}^{n} x^{r_i} R(x)=∑i=1nxri,如果第 r i r_i ri行未被攻击,该项系数为 1 1 1,否则系数为 0 0 0;(2)针对与列的多项式: C ( x ) = ∑ i = 1 m x − c i C(x)=\sum_{i=1}^{m} x^{{-c_i}} C(x)=∑i=1mx−ci(为了避免指数为负数,可以乘上 x m x^m xm),如果第 c i c_i ci列未被攻击,则 m − c i m-c_i m−ci项系数为 1 1 1,否则系数为 0 0 0。然后计算这两个多项式的乘积(利用 F F T FFT FFT),得到多项式 D ( x ) D(x) D(x),那么该多项式指数为 i i i的那一项的系数的含义就是:编号为 i i i的主对角线中没有被攻击的方块数,至此聪明的同学可能想到下一步要做什么了,遍历主对角线的编号,如果某条主对角线被标记过(也就是说这条对角线被攻击了),用刚才计算的贡献减去其对应的系数即可。这里有点绕,看代码会好理解很多。
#include<bits/stdc++.h>
using namespace std; //FFT模板
typedef long long ll;
const int maxn=5e4+5;
struct Complex
{
double x,y;
Complex(double dx=0,double dy=0)
{
x=dx;
y=dy;
}
};
Complex operator +(Complex a,Complex b)
{
return Complex(a.x+b.x,a.y+b.y);
}
Complex operator -(Complex a,Complex b)
{
return Complex(a.x-b.x,a.y-b.y);
}
Complex operator *(Complex a,Complex b)
{
return Complex(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);
}
const double pi=acos(-1.0); //PI
int limit=1,bit=0;
int wz[maxn<<2];
Complex a[maxn<<2],b[maxn<<2];
bool R[maxn],C[maxn],D[maxn<<1];//标记某一行、列、主对角线上 是否有超级车
void FFT(Complex *A,int inv)
{
for(int i=0;i<limit;i++)
if(i<wz[i])
swap(A[i],A[wz[i]]);
for(int mid=1;mid<limit;mid<<=1)
{
Complex wn(cos(pi/mid),inv*sin(pi/mid));
for(int i=0;i<limit;i+=mid<<1)
{
Complex w(1,0);
for(int j=0;j<mid;j++,w=w*wn)
{
Complex t1=A[i+j];
Complex t2=w*A[i+mid+j];
A[i+j]=t1+t2;
A[i+mid+j]=t1-t2;
}
}
}
}
int main()
{
int t,n,m,num,times=0;
scanf("%d",&t);
while(t--)
{
memset(a,0,sizeof(a));
memset(b,0,sizeof(b));
memset(R,0,sizeof(R));
memset(C,0,sizeof(C));
memset(D,0,sizeof(D));
scanf("%d %d %d",&n,&m,&num);
limit=1,bit=0;
int len=n+m;
while(limit<=len)
{
limit<<=1;
bit++;
}
for(int i=0;i<limit;i++)
wz[i]=(wz[i>>1]>>1)|((i&1)<<(bit-1));
int x,y;
for(int i=0;i<num;i++)
{
scanf("%d %d",&x,&y);//读入超级车的坐标
R[x]=C[y]=D[x+m-y]=1;//记录 行 列 主对角线
}
ll nr=0,nc=0;
for(int i=1;i<=n;i++)
if(!R[i]) //没有被攻击的行
++nr,a[i].x=1;
for(int i=1;i<=m;i++)
if(!C[i]) //没有被攻击的列
++nc,b[m-i]=1;
FFT(a,1);
FFT(b,1);
for(int i=0;i<limit;i++)
a[i]=a[i]*b[i];
FFT(a,-1);
ll ans=nr*nc;
int MAX=n+m;
for(int i=1;i<n+m;i++)
if(D[i]) //被攻击的主对角线
ans-=(ll)(a[i].x/limit+0.5);
printf("Case %d: %lld\n",++times,ans);
}
return 0;
}