现在请求你维护一个数列,要求提供以下两种操作: 1、 查询操作。 语法:Q L 功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值。 限制:L不超过当前数列的长度。 2、 插入操作。 语法:A n 功能:将n加上t,其中t是最近一次查询操作的答案(如果还未执行过查询操作,则t=0),并将所得结果对一个固定的常数D取模,将所得答案插入到数列的末尾。 限制:n是非负整数并且在长整范围内。 注意:初始时数列是空的,没有一个数。
这道题有一个很明显的做法。
就是线段树了。因为操作数小于20W。
所以我们可以弄一个20W长度的线段树
然后有两种操作,一个是更新就行了。另一个就是查询。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <ctime>
#include <vector>
#include <map>
#define MAXN 200005
#define lch(x) x<<1
#define rch(x) x<<1|1
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
using namespace std;
int n, mod, lst;
int mx[4 * MAXN];
void up(int rt)
{
mx[rt] = max(mx[lch(rt)], mx[rch(rt)]);
}
void update(int p, int v, int l, int r, int rt)
{
if(l == r)
{
mx[rt] = v;
return;
}
int m = (l + r) >> 1;
if(m >= p) update(p, v, lson);
else update(p, v, rson);
up(rt);
}
int query(int L, int R, int l, int r, int rt)
{
if(L <= l && R >= r) return mx[rt];
int m = (l + r) >> 1;
int ret = 0;
if(L <= m) ret = max(ret, query(L, R, lson));
if(R > m) ret = max(ret, query(L, R, rson));
return ret;
}
int main()
{
int x, len = 0;
char op[5];
scanf("%d%d", &n, &mod);
int m = n;
while(m--)
{
scanf("%s%d", op, &x);
if(op[0] == 'A')
{
++len;
update(len, (x + lst) % mod, 1, n, 1);
}
else printf("%d\n", lst = query(len - x + 1, len, 1, n, 1));
}
return 0;
}
然后有一个更优的算法。
因为我们查的是末尾某长度下的最大的数。
很显然的是,如果一个数出现在某个数后边,并且这个数大于之前的数,那么之前的数无论如何也不会成为最大的数的。
所以我们可以维护一个单调递减的栈。
每次要加入一个数之前,将栈顶不大于这个数的元素都弹出去。
然后查询的时候,直接二分查找就可以了
当然在实际的实现中,栈中存的是元素的位置
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <ctime>
#include <vector>
#include <map>
#define MAXN 200005
#define lch(x) x<<1
#define rch(x) x<<1|1
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
using namespace std;
int n, mod, lst;
int size;
int a[MAXN];
int num[MAXN];
int main()
{
int x, len = 0;
char op[5];
scanf("%d%d", &n, &mod);
int m = n;
while(m--)
{
scanf("%s%d", op, &x);
if(op[0] == 'A')
{
x = (x + lst) % mod;
num[++len] = x;
while(size && num[a[size]] <= x) size--;
a[++size] = len;
}
else
{
int pos = lower_bound(a + 1, a + size + 1, len - x + 1) - a;
printf("%d\n", lst = num[a[pos]]);
}
}
return 0;
}