2017 Multi-University Training Contest - Team 1 - 1001



Add More Zero

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 761    Accepted Submission(s): 523



Problem Description
There is a youngster known for amateur propositions concerning several mathematical hard problems.

Nowadays, he is preparing a thought-provoking problem on a specific type of supercomputer which has ability to support calculations of integers between 0 and (2m1) (inclusive).

As a young man born with ten fingers, he loves the powers of 10 so much, which results in his eccentricity that he always ranges integers he would like to use from 1 to 10k (inclusive).

For the sake of processing, all integers he would use possibly in this interesting problem ought to be as computable as this supercomputer could.

Given the positive integer m , your task is to determine maximum possible integer k that is suitable for the specific supercomputer.
 

Input
The input contains multiple test cases. Each test case in one line contains only one positive integer m , satisfying 1m105 .
 

Output
For each test case, output " Case # x : y " in one line (without quotes), where x indicates the case number starting from 1 and y denotes the answer of corresponding case.
 

Sample Input
  
  
1 64
 

Sample Output
  
  
Case #1: 0 Case #2: 19
 题目大意:给你一个数m求2的m次方-1等于10的k次方求出这个k。
题目做法:k=log10(2的m次方)即k=m*log10(2)。
#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
using namespace std;
int main()
{
	int m;
	int sum=1;
	while(scanf("%d",&m)!=EOF)
	{
		double result;
		result=log10(2.0);
		int key=result*m;
		printf("Case #%d: %d\n",sum,key);
		sum++;
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值