c++下实用的工具stringstream

stringstream

它继承自 ostream 与istream,所以可以输入输出,而且它还有很多其他用处,列如类型转换。
它可以把int,long,double这些数字输入至string,也可以把一个int的值输入给long。
它十分类似于sprintf函数,把格式化输出至一个char的缓冲区中。只不过stringstream可以把缓冲区的内容
自动转换成数字输入给整形。

清空stringstream

先使用它的成员函数 object.str(“”)再使用object.clear()这俩个函数来清空stringstream的缓冲区,以防下次输入给其他变量时出错。

str成员函数

1.object.str()是返回一个缓冲区的一个string对象的拷贝。
2.object.str(“aaa”),是设置当前缓冲区的对象为aaa,如果之前缓冲有数据将被清零后再被赋成”aaa”。
3.对于str成员函数用来设置缓冲区内容时,str函数会清零之前缓冲区的内容。如果接下来继续object<<将内容输出至缓冲区时,缓冲区内容不会拼接,而是直接用新输出到缓冲区的内容覆盖掉旧的数据。

代码列子

#include <iostream>
#include <sstream>
#include <algorithm>
using namespace std;
int main() {
    stringstream stream;
    int arr[3] = { 1, 2, 3 };
    int n;
    stream << arr[0];
    stream << arr[1];
    stream << arr[2];
    stream >> n;
    cout << n << endl;
    cout << stream.str() << endl;;
    return 0;
}
结果:
123
123
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值