python3.6
tensorflow1.12.0
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
x = tf.placeholder("float",[None,784])
y = tf.nn.softmax(tf.matmul(x,W)+b)
y_ = tf.placeholder("float",[None,10])
# 交叉熵 = −∑y′log(y)
cross_entropy = - tf.reduce_sum( y_ * tf.log(y) )
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
init = tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init)
for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step,feed_dict={
x:batch_xs,
y_:batch_ys
})
correct_prediction = tf.equal( tf.argmax(y,1), tf.argmax(y_,1) )
accuracy = tf.reduce_mean( tf.cast( correct_prediction,"float" ) )
print( sess.run(accuracy, feed_dict={
x: mnist.test.images, y_: mnist.test.labels
}) )
正确率:
0.9097
备注:
如果出现错误提示
检查代码是否有 tf.multiply ,将其替换为 tf.matmul