MNIST手写数字识别

python3.6

tensorflow1.12.0 

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
x = tf.placeholder("float",[None,784])

y = tf.nn.softmax(tf.matmul(x,W)+b)

y_ = tf.placeholder("float",[None,10])

# 交叉熵 = −∑y′log(y)
cross_entropy = - tf.reduce_sum( y_ * tf.log(y) )
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
init = tf.initialize_all_variables()

with tf.Session() as sess:
    sess.run(init)
    for i in range(1000):
        batch_xs, batch_ys = mnist.train.next_batch(100)
        sess.run(train_step,feed_dict={
            x:batch_xs,
            y_:batch_ys

        })

    correct_prediction = tf.equal( tf.argmax(y,1), tf.argmax(y_,1) )
    accuracy = tf.reduce_mean( tf.cast( correct_prediction,"float" ) )
    print( sess.run(accuracy, feed_dict={
        x: mnist.test.images, y_: mnist.test.labels
        }) )

正确率: 

0.9097

备注:

如果出现错误提示

ValueError: Dimensions must be equal, but are 784 and 500 for 'Mul' (op: 'Mul') with input shapes: [?,784], [784,500]

检查代码是否有  tf.multiply ,将其替换为 tf.matmul

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值