- 博客(40)
- 收藏
- 关注
原创 26备战秋招day17——机器学习基础
机器学习入门指南》详细介绍了六种常见的监督学习算法,包括线性回归、逻辑回归、决策树、KNN、SVM和神经网络。每个算法部分解释其基本原理、数学公式,并提供简单的Python代码示例,帮助初学者理解和实践。最后,文章给出学习建议,助力读者建立坚实的机器学习基础。
2024-12-08 21:08:45
1026
原创 Java基础05
继承是面向对象编程中的一种机制,允许一个类(子类)继承另一个类(父类)的属性和方法。通过继承,子类可以重用父类的代码,增强代码的复用性和可维护性。此外,继承还支持多层次的类层次结构,便于组织和管理代码。子类重新定义父类中已经存在的方法,以改变或扩展其行为。方法签名(方法名和参数列表)必须相同,返回类型可以相同或是其子类型。它允许对象以父类的引用来调用子类重写的方法,从而实现动态绑定。在同一个类中,可以定义多个方法名相同但参数列表不同的方法。如何在Java中使用它?关键字继承父类,从而获得父类的属性和方法。
2024-12-08 20:23:15
440
原创 26备战秋招day17——llama
Llama(Large Language Model Meta AI)是 Meta 推出的高效大规模语言模型,基于 Transformer 架构,广泛应用于文本生成、对话系统等任务。Llama 模型采用了 decoder-only 架构,训练使用了海量文本数据。本文介绍了 Llama 的架构、训练过程,并详细说明了如何通过 Hugging Face 使用 Llama 模型进行文本生成、问答等 NLP 任务。
2024-12-07 14:51:43
984
原创 Java基础04
类是定义对象的模板,对象是类的实例。构造函数用于初始化对象的属性。**this**用来引用当前对象的属性或方法。**super**用来访问父类的构造函数或成员。成员变量和成员方法定义了对象的状态和行为。通过这些知识,你可以开始理解如何创建和操作类与对象,并能编写简单的面向对象程序。如果你希望了解更多关于算法和力扣刷题的知识,欢迎关注微信公众号【算法最TOP】!
2024-12-07 13:20:23
430
原创 26备战秋招day16——大模型
这篇博客详细介绍了大规模语言模型(LLM)的训练流程,包括预训练、指令微调、奖励模型(RM)和强化学习(RLHF)。预训练阶段通过大量文本数据学习语言结构,指令微调使模型能根据具体任务生成响应。奖励模型评估生成质量,而强化学习进一步优化模型生成策略。各个阶段结合起来,逐步提升模型的任务执行能力,使其能够生成高质量的、符合人类期望的输出。
2024-12-06 13:03:47
1093
原创 java基础03
这一天的学习内容主要是字符串操作与集合框架的基础,掌握了字符串的常用方法和集合的各种实现类,能帮助我们高效地处理和操作数据。无论是在实际开发中还是面试中,这些知识点都是常见且必备的基础。希望通过本篇博客,你能更清晰地了解和掌握这些基础知识!如果你希望了解更多关于算法和力扣刷题的知识,欢迎关注微信公众号【算法最TOP】!
2024-12-06 10:13:05
625
原创 java基础02
是一种面向对象的编程语言,具有平台独立性,广泛应用于Web开发、移动应用、桌面应用等领域。Java程序通过Java虚拟机(JVM)实现跨平台运行。以上是Java基础语法的核心概念,通过问答的形式进行了详细解答。掌握这些基础知识是学习Java的第一步,建议在实践中不断加深理解。数组的大小在创建时确定,可以通过索引访问。方法是执行一段逻辑的代码块,定义包括返回类型、方法名、参数列表和方法体。是存储数据的容器,声明时指定类型和变量名,并可赋予初始值。常量是值不可变的变量。机制处理异常,保证程序的正常运行。
2024-12-05 11:00:26
715
原创 26备战秋招day14——大语言模型概述
大语言模型(LLMs)是自然语言处理的核心技术,通过Transformer架构和预训练策略,能够高效理解与生成文本。它们在智能对话、翻译、文本生成等领域表现出色,但仍面临计算资源、偏见和可解释性等挑战。未来,LLMs将推动NLP技术进一步发展,扩展到多模态学习和复杂任务。
2024-12-04 16:03:20
757
原创 26备战秋招day13——transformer
本文深入解析了Transformer模型的核心组件及其实现。首先介绍了Transformer的基本结构,包括编码器和解码器,并详细解释了自注意力机制(Self-Attention)及其计算过程。接着,介绍了多头自注意力机制,通过并行执行多个自注意力层来学习不同的关系,并提供了代码实现。文章还讲解了编码器和解码器的结构,以及如何将它们组合成完整的Transformer模型。通过逐步实现和讲解,帮助读者深入理解Transformer的工作原理及其在自然语言处理中的应用。
2024-12-03 17:25:44
699
原创 26备战秋招code——lc每日一题14
这道题目看似复杂,但通过合理的分析和适当的循环控制,我们能够以较低的时间复杂度完成。在实现过程中,我们只需跟踪当前的胜者和他的连续胜利次数,从而轻松解决问题。通过这篇博客,你不仅学习到了如何通过遍历数组实现队列中的胜者追踪,还掌握了C++、Python、Go和Java的多种解法。如果你希望了解更多关于算法和力扣刷题的知识,欢迎关注微信公众号【算法最TOP】!
2024-10-24 22:57:29
924
原创 26备战秋招day12——基于Wikitext-2数据集的gpt2文本生成
文本生成是自然语言处理中的核心任务,使用模型如GPT-2生成流畅文本。通过调整学习率、正则化和早停策略避免过拟合。本文介绍常用数据集与评价指标,演示了GPT-2的文本生成及代码实践。
2024-10-24 22:20:26
1195
原创 26备战秋招day11——基于CoNLL-2003的bert序列标注
序列标注是自然语言处理中的关键任务,目标是为句子中的每个单词分配标签,如命名实体识别(NER)中的人名、地名等。本文介绍了常见的数据集和模型,如BERT,并通过实际代码演示如何使用BERT进行序列标注任务的训练和评估。
2024-10-23 10:32:30
1149
原创 26备战秋招day10——基于MRPC的bert文本匹配
本博客介绍了如何使用 BERT 模型进行文本匹配任务。通过 Hugging Face 的 `datasets` 和 `transformers` 库,加载并微调 BERT 模型,处理 GLUE MRPC 数据集,完成对句子相似度的判断。文章涵盖了数据集、BERT 模型的特点、评估指标(准确率、精度、召回率和 F1 分数),并展示了完整的实践代码。BERT 强大的双向 Transformer 架构有效提升了文本匹配任务的性能。
2024-10-22 10:33:47
792
原创 26备战秋招day9——基于imdb的bert文本分类
文本分类是自然语言处理中常见的任务,应用广泛,如垃圾邮件检测和情感分析。本文介绍了文本分类的基础概念、常见模型(如BERT)以及评价指标,并通过IMDb数据集展示如何使用BERT进行文本分类实践,帮助初学者快速上手。
2024-10-20 16:15:57
882
原创 26备战秋招day8——基于cifar10的diffusion图像生成
### 精简摘要:扩散模型(Diffusion Model)是一类新兴的生成模型,通过模拟逐步添加和去除噪声的过程,实现从随机噪声到清晰图像的生成。本文以CIFAR-10数据集为例,详细介绍了扩散模型的基本原理和实现步骤,并通过PyTorch对其进行实践,展示了模型的训练过程及结果。
2024-10-19 11:50:52
2799
原创 26备战秋招day7——自然语言处理概述
自然语言处理(NLP)是一门帮助机器理解、生成和处理人类语言的技术,广泛应用于搜索引擎、智能客服、机器翻译等领域。NLP的关键研究方向包括词嵌入、文本分类、机器翻译、情感分析和命名实体识别。通过深度学习和预训练模型,如BERT和GPT,NLP技术在语义理解和语言生成上取得了巨大突破。本文深入介绍了这些技术及其应用,帮助读者了解NLP的核心概念和前沿进展。
2024-10-18 15:27:18
721
原创 26备战秋招day6——计算机视觉概述
计算机视觉是一门让计算机理解和分析图像、视频等视觉数据的技术,涉及图像分类、目标检测、图像分割等任务。通过卷积神经网络(CNN)、YOLO等模型,计算机能够在自动驾驶、医疗影像等领域实现突破。常用的数据集如ImageNet、COCO,评价模型性能的指标包括准确率、mAP、IoU等。这篇博客深入探讨了该领域的核心技术与应用。
2024-10-14 18:43:03
1939
原创 26备战秋招day5——基于voc的yolov8目标检测
### 博客摘要:本文详细介绍了如何使用 YOLOv8 和自定义 VOC 数据集进行目标检测。内容包括目标检测任务的介绍、VOC 数据集的结构、YOLO 系列的发展历程以及 YOLOv8 的训练和推理实践。通过完整的代码示例,读者可以快速上手 YOLOv8 模型,实现高效的目标检测任务。如果你需要自定义的 VOC 数据集,可以关注微信公众号【算法最TOP】,回复关键词 "voc2007",即可获得下载链接。
2024-10-09 11:40:14
2012
原创 26备战秋招day4——基于resnet的voc数据集图像分类
本博客介绍了如何使用 **ResNet-50** 深度神经网络在 **Pascal VOC** 数据集上实现多标签图像分类。内容涵盖了 ResNet-50 的网络架构及其残差块的工作原理,详细讲解了如何使用 PyTorch 构建、训练和评估模型,并通过多标签分类任务展示了 ResNet 的强大性能。
2024-10-08 10:21:44
1074
原创 26备战秋招day3——基于voc的目标检测
本文介绍了基于 Pascal VOC 数据集使用 Faster R-CNN 模型进行目标检测的完整流程。通过数据加载与预处理、模型构建、训练和验证,展示了如何应用 Faster R-CNN 进行多目标检测,并成功地对物体进行分类与定位,最终保存了训练模型供后续使用。
2024-09-25 17:30:04
1112
原创 26备战秋招day2——基于cifar10的图像分类
本篇博客介绍了如何基于 CIFAR-10 数据集进行图像分类任务,采用 PyTorch 框架构建深度学习模型。文章首先对 CIFAR-10 数据集和数据预处理进行概述,然后展示了如何使用预训练的 ResNet18 模型进行训练和评估。通过快速验证,确保代码正确运行,并通过增加训练轮数和批次大小优化模型性能。最后,通过混淆矩阵可视化分析模型的分类效果,提供了进一步优化的建议。该博客为读者提供了图像分类的完整流程和实践技巧。
2024-09-24 16:41:31
772
原创 26备战秋招day1——mnist手写数字识别
这篇博客介绍了如何通过卷积神经网络(CNN)实现 MNIST 手写数字识别任务。博客从数据预处理开始,详细讲解了如何使用 PyTorch 加载 MNIST 数据集,并对图像进行标准化。接着,构建了一个简单的 CNN 模型,通过卷积层和全连接层提取图像特征并进行分类。随后介绍了模型训练和测试的流程,最后提供了如何评估模型性能的具体方法。该博客为初学者提供了完整的代码示例,帮助他们理解深度学习在图像分类中的应用
2024-09-23 16:40:33
1222
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人