内容:将存储成本与数据价值匹配,包括删除价值低于存储成本的数据。
场景:在设计讨论期间及数据的整个生命周期,应用于数据及其基础存储设施。
用法:使用近因、频率和货币化分析确定数据的价值。将存储成本与数据价值匹配。
原因:并非所有的数据对业务都有相似的价值,事实上,随着时间的推移,数据的价值经常下降。因此,我们不应该用单一的存储解决方案以同样的成本存储所有的数据。
要点:理解和计算数据的价值并将存储成本与该价值匹配很重要。不要为没有股东利益回报的数据支付一分钱。
数据是有价值的,不同的数据其价值含量是不一样的。于是有一些人引入一些因素对数据的价值进行评估,主要的因素有:多久之前被访问、数据多久被访问一次、特定数据对业务的价值。通过这三个维度可以对数据的价值含量做出可行的货币价值估算。
根据不同数据的货币价值,对数据安排合理的存储,高价值含量的数据安排在反应速度非常快的系统中,低价值含量的可以转移到云上或者是压缩之后放到硬盘上。根据数据的价值安排对应的存储结构是一种非常好的处理数据的方式。
遇到过一些实际的案例,例如用户最近一年的数据要比一年以前的数据更有价值,所以每年都会归档操作和数据整理的操作进行。