贝叶斯决策
首先来看贝叶斯分类,我们都知道经典的贝叶斯公式:
P ( w ∣ x ) = P ( x ∣ w ) P ( w ) ) ) P ( x ) ) P(w|x) = \frac{P(x|w)P(w)))}{P(x))} P(w∣x)=P(x))P(x∣w)P(w)))
其中:
P
(
w
)
P(w)
P(w):为先验概率,表示每种类别分布的概率;
P
(
x
∣
w
)
P(x|w)
P(x∣w):为类条件概率,表示在某种类别前提下,某事发生的概率;
P
(
w
∣
x
)
P(w|x)
P(w∣x):为后验概率,表示某事发生了,并且它属于某一类别的概率。
有了这个后验概率,我们就可以对样本进行分类。后验概率越大,说明某事物属于这个类别的可能性越大,我们越有理由把它归到这个类别下。
我们来看一个直观的例子:已知:在夏季,某公园男性穿凉鞋的概率为1/2,女性穿凉鞋的概率为2/3,并且该公园中男女比例通常为2:1,问题:若你在公园中随机遇到一个穿凉鞋的人,请问他的性别为男性或女性的概率分别为多少?
从问题看,就是上面讲的,某事发生了,它属于某一类别的概率是多少?即后验概率。
设:
w
1
w_1
w1=男性,
w
2
w_2
w2=女性,
x
x
x=穿凉鞋
由已知可得:
先验概率:
P
(
w
1
)
=
2
/
3
P(w_1)=2/3
P(w1)=2/3,
P
(
w
2
)
=
1
/
3
P(w_2)=1/3
P(w2)=1/3
类条件概率:
P
(
x
∣
w
1
)
=
1
/
2
P(x|w_1)=1/2
P(x∣w1)=1/2,
P
(
x
∣
w
2
)
=
2
/
3
P(x|w_2)=2/3
P(x∣w2)=2/3
P ( x ) = P ( x ∣ w 1 ) P ( w 1 ) + P ( x ∣ w 2 ) P ( w 2 ) = 5 / 9 P(x)=P(x|w_1)P(w_1) + P(x|w_2)P(w_2) = 5/9 P(x)=P(x∣w1)P(w1)+P(x∣w2)P(w2)=5/9
男性和女性穿凉鞋相互独立,所以(若只考虑分类问题,只需要比较后验概率的大小,
P
(
x
)
P(x)
P(x)的取值并不重要)由贝叶斯公式算出:
P
(
w
1
∣
x
)
=
P
(
x
∣
w
1
)
P
(
w
1
)
)
)
P
(
x
)
)
=
1
/
2
×
2
/
3
5
/
9
=
3
5
P(w_1|x) = \frac{P(x|w_1)P(w_1)))}{P(x))} = \frac{1/2 \times 2/3}{5/9} = \frac{3}{5}
P(w1∣x)=P(x))P(x∣w1)P(w1)))=5/91/2×2/3=53
P ( w 2 ∣ x ) = P ( x ∣ w 2 ) P ( w 2 ) ) ) P ( x ) ) = 2 / 3 × 1 / 3 5 / 9 = 2 5 P(w_2|x) = \frac{P(x|w_2)P(w_2)))}{P(x))} = \frac{2/3 \times 1/3}{5/9} = \frac{2}{5} P(w2∣x)=P(x))P(x∣w2)P(w2)))=5/92/3×1/3=52
问题引出
但是在实际问题中并不都是这样幸运的,我们能获得的数据可能只有有限数目的样本数据,而先验概率
P
(
w
i
)
P(w_i)
P(wi)和类条件概率(各类的总体分布)
P
(
x
∣
w
i
)
P(x|w_i)
P(x∣wi)都是未知的。根据仅有的样本数据进行分类时,一种可行的办法是我们需要先对先验概率和类条件概率进行估计,然后再套用贝叶斯分类器。
先验概率的估计较简单,1、每个样本所属的自然状态都是已知的(有监督学习);2、依靠经验;3、用训练样本中各类出现的频率估计。
类条件概率的估计(非常难),原因包括:概率密度函数包含了一个随机变量的全部信息;样本数据可能不多;特征向量x的维度可能很大等等。总之要直接估计类条件概率的密度函数很难。解决的办法就是,把估计完全未知的概率密度
P
(
x
∣
w
i
)
P(x|w_i)
P(x∣wi)转化为估计参数。这里就将概率密度估计问题转化为参数估计问题,极大似然估计就是一种参数估计方法。当然了,概率密度函数的选取很重要,模型正确,在样本区域无穷时,我们会得到较准确的估计值,如果模型都错了,那估计半天的参数,肯定也没啥意义了。
重要前提
上面说到,参数估计问题只是实际问题求解过程中的一种简化方法(由于直接估计类条件概率密度函数很困难)。所以能够使用极大似然估计方法的样本必须需要满足一些前提假设。
重要前提:训练样本的分布能代表样本的真实分布。每个样本集中的样本都是所谓独立同分布的随机变量 (iid条件),且有充分的训练样本。
极大似然估计
极大似然估计的原理,用一张图片来说明,如下图所示:
总结起来,最大似然估计的目的就是:利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值。
原理:极大似然估计是建立在极大似然原理的基础上的一个统计方法,是概率论在统计学中的应用。极大似然估计提供了一种给定观察数据来评估模型参数的方法,即:“模型已定,参数未知”。通过若干次试验,观察其结果,利用试验结果得到某个参数值能够使样本出现的概率为最大,则称为极大似然估计。
由于样本集中的样本都是独立同分布,可以只考虑一类样本集D,来估计参数向量θ。记已知的样本集为:
D = { x 1 , x 2 , . . . , x N } D=\left \{ x_1, x_2, ..., x_N \right \} D={x1,x2,...,xN}
似然函数(linkehood function):联合概率密度函数 P ( D ∣ θ ) P(D|θ) P(D∣θ)称为相对于 { x 1 , x 2 , . . . , x N } \left \{ x_1, x_2, ..., x_N \right \} {x1,x2,...,xN}的θ的似然函数。
l ( θ ) = P ( D ∣ θ ) = P ( x 1 , x 2 , . . . , x N ∣ θ ) = ∏ i = 1 N P ( x i ∣ θ ) l(\theta ) = P(D|\theta )=P(x_1, x_2, ..., x_N|\theta )=\prod_{i=1}^{N}P(x_i|\theta ) l(θ)=P(D∣θ)=P(x1,x2,...,xN∣θ)=∏i=1NP(xi∣θ)
如果
θ
^
\hat{\theta }
θ^是参数空间中能使似然函数
l
(
θ
)
l(\theta)
l(θ)最大的θ值,则
θ
^
\hat{\theta }
θ^应该是“最可能”的参数值,那么
θ
^
\hat{\theta }
θ^就是θ的极大似然估计量。它是样本集的函数,记作:
θ
^
=
d
(
x
1
,
x
2
,
.
.
.
,
x
N
)
=
d
(
D
)
\hat{\theta }=d(x_1,x_2,...,x_N)=d(D)
θ^=d(x1,x2,...,xN)=d(D)
d
(
x
1
,
x
2
,
.
.
.
,
x
N
)
d(x_1,x_2,...,x_N)
d(x1,x2,...,xN)称作极大似然函数估计值。
求解极大似然函数
ML估计:求使得出现该组样本的概率最大的θ值。
θ ^ = a r g m a x θ l ( θ ) = a r g m a x θ ∏ i = 1 N P ( x i ∣ θ ) \hat{\theta }=arg \ \underset{\theta}{max} \ l(\theta ) = arg \ \underset{\theta}{max}\prod_{i=1}^{N}P(x_i|\theta ) θ^=arg θmax l(θ)=arg θmax∏i=1NP(xi∣θ)
实际中为了便于分析,定义了对数似然函数:
H
(
θ
)
=
l
n
l
(
θ
)
H(\theta) = ln \ l(\theta )
H(θ)=ln l(θ)
θ
^
=
a
r
g
m
a
x
θ
H
(
θ
)
=
a
r
g
m
a
x
θ
l
n
l
(
θ
)
=
a
r
g
m
a
x
θ
∑
i
=
1
N
(
l
n
P
(
x
i
∣
θ
)
)
\hat{\theta }=arg \ \underset{\theta}{max} \ H(\theta ) = arg \ \underset{\theta}{max} \ ln \ l(\theta ) = arg \ \underset{\theta}{max}\sum_{i=1}^{N}(ln \ P(x_i|\theta))
θ^=arg θmax H(θ)=arg θmax ln l(θ)=arg θmax∑i=1N(ln P(xi∣θ))
1. 未知参数只有一个(θ为标量)
在似然函数满足连续、可微的正则条件下,极大似然估计量是下面微分方程的解:
d l ( θ ) d θ = 0 \frac{dl(\theta )}{d\theta }= 0 dθdl(θ)=0 或者等价于 d H ( θ ) d θ = d l n l ( θ ) d θ = 0 \frac{d H(\theta )}{d\theta }= \frac{d lnl(\theta )}{d\theta } = 0 dθdH(θ)=dθdlnl(θ)=0
2.未知参数有多个(θ为向量)
则θ可表示为具有S个分量的未知向量:
θ = [ θ 1 , θ 2 , . . . , θ S ] T \theta = [\theta_1, \theta_2, ..., \theta_S]^{T} θ=[θ1,θ2,...,θS]T
记梯度算子:
▽ θ = [ ∂ ∂ θ 1 , ∂ ∂ θ 2 , . . . , ∂ ∂ θ S ] T \triangledown _{\theta} = [\frac{\partial }{\partial \theta_1}, \frac{\partial }{\partial \theta_2}, ..., \frac{\partial }{\partial \theta_S}]^{T} ▽θ=[∂θ1∂,∂θ2∂,...,∂θS∂]T
若似然函数满足连续可导的条件,则最大似然估计量就是如下方程的解。
▽ θ H ( θ ) = ▽ θ l n l ( θ ) = ∑ i = 1 N ▽ θ l n P ( x i ∣ θ ) = 0 \triangledown _{\theta} H(\theta) = \triangledown _{\theta} ln \ l(\theta) = \sum_{i=1}^{N}\triangledown _{\theta} ln \ P(x_i|\theta) = 0 ▽θH(θ)=▽θln l(θ)=∑i=1N▽θln P(xi∣θ)=0
方程的解只是一个估计值,只有在样本数趋于无限多的时候,它才会接近于真实值。
极大似然估计的例子
例1:设样本服从正态分布 N ( μ , σ 2 ) N(\mu , \sigma ^{2}) N(μ,σ2),则似然函数为:
L ( μ , σ 2 ) = ∏ i = 1 N 1 2 π σ e − ( x i − μ ) 2 2 σ 2 = ( 2 π σ 2 ) − n 2 e − 1 2 σ 2 ∑ i = 1 n ( x i − μ ) 2 L(\mu , \sigma ^{2}) = \prod_{i=1}^{N} \frac{1}{\sqrt{2\pi } \sigma } e^{- \frac{(x_i - \mu )^{2}}{2\sigma ^{2}}} = (2\pi \sigma ^{2})^{-\frac{n}{2}}e^{-\frac{1}{2 \sigma ^{2}} \sum_{i=1}^{n} (x_i - \mu )^{2}} L(μ,σ2)=∏i=1N2πσ1e−2σ2(xi−μ)2=(2πσ2)−2ne−2σ21∑i=1n(xi−μ)2
它的对数:
l n L ( μ , σ 2 ) = − n 2 l n ( 2 π ) − n 2 l n ( σ 2 ) − 1 2 σ 2 ∑ i = 1 n ( x i − μ ) 2 ln L(\mu , \sigma ^{2}) = -\frac{n}{2}ln(2\pi ) - \frac{n}{2}ln(\sigma ^{2}) - \frac{1}{2\sigma ^{2}}\sum_{i=1}^{n} (x_i - \mu )^{2} lnL(μ,σ2)=−2nln(2π)−2nln(σ2)−2σ21∑i=1n(xi−μ)2
求导,得方程组:
{ ∂ l n L ( μ , σ 2 ) ∂ μ = 1 σ 2 ∑ i = 1 n ( x i − μ ) = 0 ∂ l n L ( μ , σ 2 ) ∂ σ 2 = − n 2 σ 2 + − 1 2 σ 4 ∑ i = 1 n ( x i − μ ) 2 = 0 \left\{\begin{matrix}\frac{\partial ln L(\mu , \sigma ^{2}) }{\partial \mu } = \frac{1}{\sigma ^{2}}\sum_{i=1}^{n} (x_i-\mu ) \quad \quad \quad \quad \quad = 0 & \\ & \\ \frac{\partial ln L(\mu , \sigma ^{2}) }{\partial \sigma ^{2} } = -\frac{n}{2\sigma ^{2}} + -\frac{1}{2\sigma ^{4}} \sum_{i=1}^{n} (x_i - \mu )^{2} = 0 & \end{matrix}\right. ⎩⎪⎨⎪⎧∂μ∂lnL(μ,σ2)=σ21∑i=1n(xi−μ)=0∂σ2∂lnL(μ,σ2)=−2σ2n+−2σ41∑i=1n(xi−μ)2=0
联合解得:
{ μ ∗ = x ˉ = 1 n ∑ i = 1 n x i ( σ ∗ ) 2 = 1 n ∑ i = 1 n ( x i − x ˉ ) 2 \left\{\begin{matrix}\mu ^{*} = \bar{x} = \frac{1}{n}\sum_{i=1}^{n}x_i \quad \quad & \\ & \\ (\sigma ^{*})^{2} = \frac{1}{n}\sum_{i=1}^{n} (x_i - \bar{x})^{2} & \end{matrix}\right. ⎩⎨⎧μ∗=xˉ=n1∑i=1nxi(σ∗)2=n1∑i=1n(xi−xˉ)2
似然方程有唯一解 ( μ ∗ , ( σ ∗ ) 2 ) (\mu ^{*}, (\sigma ^{*})^{2}) (μ∗,(σ∗)2),而且它一定是最大值点,这是因为当 ∣ μ ∣ → ∞ |\mu |\rightarrow \infty ∣μ∣→∞ 或 σ 2 → ∞ \sigma ^{2}\rightarrow \infty σ2→∞ 或 0时,非负函数 L ( μ , σ 2 ) → 0 L(\mu, \sigma ^{2})\rightarrow 0 L(μ,σ2)→0。于是U和 σ 2 \sigma ^{2} σ2的极大似然估计为 ( μ ∗ , ( σ ∗ ) 2 ) (\mu ^{*}, (\sigma ^{*})^{2}) (μ∗,(σ∗)2)。
例2:设样本服从均匀分布[a, b]。则X的概率密度函数:
f ( x ) = { 1 b − a , a ⩽ x ≤ b 0 , o t h e r f(x) = \left\{\begin{matrix}\frac{1}{b - a}, a \leqslant x \leq b & \\ & \\ 0, \quad \quad other & \end{matrix}\right. f(x)=⎩⎨⎧b−a1,a⩽x≤b0,other
对样本 D = { x 1 , x 2 , . . . , x n } D=\left \{ x_1, x_2, ..., x_n \right \} D={x1,x2,...,xn}
L ( a , b ) = { 1 ( b − a ) n , a ⩽ x i ≤ b , i = 1 , 2 , . . . , n 0 , o t h e r L(a, b) = \left\{\begin{matrix}\frac{1} {(b - a)^{n}}, a \leqslant x_i \leq b, i=1,2,...,n & \\ & \\ 0, \quad \quad \quad \quad \quad \quad \quad \quad other & \end{matrix}\right. L(a,b)=⎩⎨⎧(b−a)n1,a⩽xi≤b,i=1,2,...,n0,other
很显然, L ( a , b ) L(a,b) L(a,b)作为a和b的二元函数是不连续的,这时不能用导数来求解。而必须从极大似然估计的定义出发,求 L ( a , b ) L(a,b) L(a,b)的最大值,为使 L ( a , b ) L(a,b) L(a,b)达到最大,b-a应该尽可能地小,但b又不能小于 m a x { x 1 , x 2 , . . . , x n } max\left \{ x_1, x_2, ..., x_n \right \} max{x1,x2,...,xn},否则, L ( a , b ) = 0 L(a,b)=0 L(a,b)=0。类似地a不能大过 m i n { x 1 , x 2 , . . . , x n } min\left \{ x_1, x_2, ..., x_n \right \} min{x1,x2,...,xn},因此,a和b的极大似然估计:
a
∗
=
m
i
n
{
x
1
,
x
2
,
.
.
.
,
x
n
}
a^{*} = min\left \{ x_1, x_2, ..., x_n \right \}
a∗=min{x1,x2,...,xn}
b
∗
=
m
a
x
{
x
1
,
x
2
,
.
.
.
,
x
n
}
b^{*} = max\left \{ x_1, x_2, ..., x_n \right \}
b∗=max{x1,x2,...,xn}
总结
求最大似然估计量
θ
^
\hat{\theta }
θ^ 的一般步骤:
(1)写出似然函数;
(2)对似然函数取对数,并整理;
(3)求导数;
(4)解似然方程。
最大似然估计的特点:
1.比其他估计方法更加简单;
2.收敛性:无偏或者渐近无偏,当样本数目增加时,收敛性质会更好;
3.如果假设的类条件概率模型正确,则通常能获得较好的结果。但如果假设模型出现偏差,将导致非常差的估计结果。
本文转载自:https://blog.csdn.net/zengxiantao1994/article/details/72787849