极大似然估计 && 贝叶斯分类

文章介绍了贝叶斯分类的基本原理,包括先验概率、类条件概率和后验概率的概念。在实际应用中,由于概率未知,需要采用极大似然估计来估计这些参数。极大似然估计旨在找到最可能导致观测数据的参数值,通过对数似然函数优化来求解。文章还强调了使用这种方法的前提条件,即样本的独立同分布性。
摘要由CSDN通过智能技术生成

极大似然估计 && 贝叶斯分类

贝叶斯分类

经典贝叶斯公式:

其中:先验概率,表示类别的分布;类条件概率,表示类别发生的概率;后验概率,表示发生了,它属于类别的概率。

后验概率越大,表示属于某类别的可能性越大,因此可以利用后验概率进行样本的分类

极大似然估计

问题引入

实际生活中,由于样本数量有限, 先验概率和 类条件概率都是未知的,因此进行贝叶斯分类时,需要先对先验概率和类条件概率进行估计,再套用贝叶斯分类器。

先验概率相对来说较好估计,可以通过有监督学习、经验、训练样本中各类别出现的频率等进行估计。

类条件概率的估计较难,因为概率密度函数包含了一个随机变量的全部信息,样本量可能不足,并且特征向量的维度可能很大。因此可以将未知的概率密度转化为参数进行估计,也就是将概率密度估计问题转化为参数估计问题,由此引出极大似然估计(一种参数估计方法)。也因此选择合适的概率密度函数就十分重要。

重要前提

由于参数估计只是实际问题求解过程中的一种简化方法,因此使用参数估计方法需要满足一些前提:

  • 有充足的训练样本;

  • 训练样本的分布能代表整体样本的真实分布;

  • 样本集中的每个样本的都是独立同分布的随机变量。

原理

由上图可以得出,极大似然估计的目的就是:利用已知样本的结果,反推最有可能导致这种结果的参数值。“模型已定,参数未知”

通过若干次试验,观察其结果,利用试验结果得到某个参数值能够使样本出现的概率为最大,则称为极大似然估计

由于样本集中的样本都是独立同分布的,因此可以假设一类样本集,来估计参数向量这个就是我们想要得到的

那么,联合概率密度函数就是相对于样本集的参数的似然函数。令:

我们最终想要得到使得最大的值,这个目标$\theta$值我们叫它。也就是说,是“最可能”的参数值,那么就是的极大似然估计量,记作:

被称作极大似然函数估计值

求解

为便于分析,选择对数似然函数来代替原似然函数,那么:

未知参数只有一个(为标量)

在似然函数满足连续、可微的正则条件下,极大似然估计量是以下微分方程的解:

等价于

未知参数有多个(为向量)

可表示为具有s个分量的未知向量:

那么极大似然估计量是以下微分方程的解:

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值