极大似然估计(实例推导)

4人阅读 评论(0) 收藏 举报
分类:

极大似然估计:

已知X是离散型随机变量,可能的取值有0,1,  2。对应概率为:

这里X更具体解释的话,可以理解为抛两次硬币,正面记1,反面记0,结果累加,只不过这里的硬币特殊,抛到反面的概率是θ。

这时对X抽取容量为10的样本,其中有2个0、5个1、3个2,求θ的最大似然估计值。

套用大佬的总结,最大似然估计法的步骤:

1.  写出似然函数;

2.  对似然函数取对数,并整理;

3.  求导数;

4.  解似然方程;

最后得θ的最大似然估计值为9/20。

查看评论

极大似然法推导线性回归和逻辑回归代价(cost)函数

问题描述 现使用在Andrew-ng教程上的房价与房间面积的例子。 假设房价与房间面积之间存在着线性关系。 在实际的预测中,由于不可能找到所有影响房价的因素,因此无法完美准确的预测房价与房子大小的关系...
  • u010327085
  • u010327085
  • 2015-07-15 11:35:55
  • 2753

机器学习笔记(二)矩估计,极大似然估计

1.参数估计:矩估计样本统计量设X1,X2…Xn…X_1,X_2…X_n…为一组样本,则 - 样本均值 : X¯¯¯=1n∑i=1nXi\overline{X} = \frac{1}{n...
  • IOThouzhuo
  • IOThouzhuo
  • 2016-02-01 12:21:15
  • 2277

极大似然估计与贝叶斯估计

序言本序言是对整体思想进行的一个概括。若没有任何了解,可以先跳过,最后回来看看;若已有了解,可以作为指导思想。 极大似然估计与贝叶斯估计是统计中两种对模型的参数确定的方法,两种参数估计方法使用不同的...
  • liu1194397014
  • liu1194397014
  • 2016-10-11 14:04:58
  • 13420

【简析】极大似然估计与最小二乘

极大似然估计: 在已知样本和给定概率分布模型的基础上,估计概率分布模型的参数,并使得在该参数下,生成这个已知样本的可能性最大的方法。 最大似然估计就是去找参数估计值,使得已经观察到的样本值发生概率...
  • ChenVast
  • ChenVast
  • 2018-01-03 11:42:04
  • 549

高斯混合模型

  • 2012年03月30日 21:42
  • 637KB
  • 下载

朴素贝叶斯算法的参数的最大似然估计

朴素贝叶斯算法的参数的最大似然估计 设输入向量为。我们假定输入特征是离散的、二值化的变量,即。对每一个训练样例,输出对象是0或者1,即。我们的模型由 参数化。 我们把建模成伯努利...
  • zhulf0804
  • zhulf0804
  • 2016-09-08 19:26:15
  • 3574

逻辑回归(logistic regression)的本质——极大似然估计

逻辑回归是分类当中极为常用的手段,因此,掌握其内在原理是非常必要的。我会争取在本文中尽可能简明地展现逻辑回归(logistic regression)的整个推导过程。...
  • zjuPeco
  • zjuPeco
  • 2017-08-14 19:36:24
  • 10096

《统计学习方法》第一章习题

《统计学习方法》第一章习题
  • u012538116
  • u012538116
  • 2017-04-30 14:39:44
  • 1508

极大似然估计:一个例子

1 题目:已知甲、乙两射手命中靶心的概率分别为0.9及0.4,今有一张靶纸上面的弹着点表明为10枪6中,已知这张靶纸肯定是甲、乙之一射手所射,问究竟是谁所射?【题目选自《应用数理统计》,吴翊、李永乐、...
  • lichengyu
  • lichengyu
  • 2009-11-20 13:48:00
  • 2980

回归-用极大似然估计来解释最小二乘

导语    这是线性回归的第一篇,后面还有多篇,包括普通最小二乘、梯度下降、牛顿法等知识,本篇主要是阐述最小二乘法损失函数与高斯分布的联系,虽然逻辑回归也是线性回归的一个变种,但它主要是0-1分布,不...
  • solo_sky
  • solo_sky
  • 2015-08-19 16:30:06
  • 2758
    个人资料
    持之以恒
    等级:
    访问量: 1446
    积分: 166
    排名: 107万+
    最新评论