realtime multi-person 2D pose estimation using part affinity fields

  1. 2.Method J J J个joint, 对应 J J J张confidence map S J S_J SJ, C C C个limb, 对应 C C C张向量图(PAF) L C L_C LC

  2. figure3 以及公式(1)(2), F是feature map, S t S^t St第t阶段的confidence map, L t L^t Lt第t阶段的PAF

  3. 公式(7), 对于多人的confidence map, 在某一点可能对应多个人的某一个joint, 则取最大值的那个人的值

  4. 公式(9), 对于多人的PAF, 不同于公式(7), 这里取平均值

  5. 公式(10), 让joint之间的连线, 尽量朝着PAF的方向

  6. subsection 2.4. 考虑joints之间的全连接是个NP问题, 即Figure.6(b),

这里先简化成spanning tree, Figure.6©, 然后把多层分解成每两层的总合, 即公式(15)

对于每两层的链接的选择, 以最大化公式(10)的score为目标(公式(12)来实现), 同时保证一个点不能被两条边共享(公式(13)(14)约束来实现),

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值