-
2.Method J J J个joint, 对应 J J J张confidence map S J S_J SJ, C C C个limb, 对应 C C C张向量图(PAF) L C L_C LC
-
figure3 以及公式(1)(2), F是feature map, S t S^t St第t阶段的confidence map, L t L^t Lt第t阶段的PAF
-
公式(7), 对于多人的confidence map, 在某一点可能对应多个人的某一个joint, 则取最大值的那个人的值
-
公式(9), 对于多人的PAF, 不同于公式(7), 这里取平均值
-
公式(10), 让joint之间的连线, 尽量朝着PAF的方向
-
subsection 2.4. 考虑joints之间的全连接是个NP问题, 即Figure.6(b),
这里先简化成spanning tree, Figure.6©, 然后把多层分解成每两层的总合, 即公式(15)
对于每两层的链接的选择, 以最大化公式(10)的score为目标(公式(12)来实现), 同时保证一个点不能被两条边共享(公式(13)(14)约束来实现),