概率论与数理统计

排列组合

加法原理: 几种方案
乘法原理: 分几步

不重复排列

P n m = n ( n − 1 ) . . . ( n − m ) = n ! ( n − m ) ! P_n^m = n(n-1)...(n-m)= \frac{n!}{(n-m)!} Pnm=n(n1)...(nm)=(nm)!n!

全排列
P n n = n ( n − 1 ) . . . 1 = n ! P_n^n = n (n-1)...1 = n! Pnn=n(n1)...1=n!

重复排列
n m n^m nm

组合:从n个不同元素中取出m个不同元素.
C n m = P n m m ! = n ! m ! ( n − m ) ! C_n^m = \frac{P_n^m}{m!}= \frac{n!}{m!(n-m)!} Cnm=m!Pnm=m!(nm)!n!

C n m = C n n − m C_n^m = C_n^{n-m} Cnm=Cnnm

C n 0 = C n n = 1 C_n^0 = C_n^n = 1 Cn0=Cnn=1

随机事件

试验:对客观事物 观察 测量.

随机试验:
1.在相同条件下可以重复.
2.结果不止一个.
3.无法预测结果.

事件:每种结果.

基本事件
相对于试验目的来说,不能再分.

复合事件
由基本事件复合

必然事件: Ω \Omega Ω
不可能事件: ϕ \phi ϕ

样本空间:所有基本事件的集合.
样本点:样本空间的元素. ω \omega ω

事件间的关系
1.包含. A发生导致B发生
A ⊂ B A \subset B AB A 包含于B
B ⊃ A B \supset A BA B 包含 A

相等: A ⊂ B , B ⊃ A . A = B A \subset B, B \supset A.A = B AB,BA.A=B

2.并(和)(A B 至少一个发生)
A ⋃ B ( A + B ) A \bigcup B(A + B) AB(A+B)

3.交(积)(A B同时发生)
A ⋂ B ( A B ) A \bigcap B (AB) AB(AB)

无限可列个: 按某种规律排成一个序列.
1.自然数 0,1,2,3,…
2.整数 0,1,-1,2,-2
3.有理数 p q \frac{p}{q} qp
0. 5 ˙ 6 ˙ = x 0.\dot 5 \dot 6 = x 0.5˙6˙=x
56. 5 ˙ 6 ˙ = 100 x 56.\dot 5 \dot 6 = 100x 56.5˙6˙=100x
56 = 99 x 56=99x 56=99x
x = 56 99 x=\frac{56}{99} x=9956

4.差(A 发生 B 不发生)
A − B A - B AB

5.互不相容事件
A B 不同时发生
AB = ϕ \phi ϕ

6.对立事件
A,B互不相容,且 A ⋃ B = ω A \bigcup B = \omega AB=ω
A B = ϕ , 且 A + B = ω AB=\phi,且 A+ B=\omega AB=ϕ,A+B=ω

1. A ‾ 是的逆 \overline A是的逆 A是的逆
A ‾ ‾ = A \overline {\overline A}=A A=A
2. A − B = A − A B = A B ‾ A-B=A-AB=A\overline B AB=AAB=AB

互不相容 与 对立的联系和区别

1.两事件对立,则一定互不相容
2.互不相容适用于多个事件,对应适用于两个事件
3.互不相容.不能同时发生,可以都不发生
对立,有且只有一个发生

7.完备事件组
A 1 , A 2 , . . . , A n 两两互不相容 , 且 ⋃ i = 1 n A i = Ω A_1,A_2,...,A_n两两互不相容,且 \bigcup\limits_{i=1}^n A_i = \Omega A1,A2,...,An两两互不相容,i=1nAi=Ω

运算

1.交换.
A ⋃ B = B ⋃ A . A \bigcup B = B \bigcup A. AB=BA.
A ⋂ B = B ⋂ A . A \bigcap B = B \bigcap A. AB=BA.
A + B = B + A
AB = BA
2.结合
( A ⋃ B ) ⋃ C = A ⋃ ( B ⋃ C ) (A \bigcup B) \bigcup C = A \bigcup (B \bigcup C) (AB)C=A(BC)
( A ⋂ B ) ⋂ C = A ⋂ ( B ⋂ C ) (A \bigcap B) \bigcap C = A \bigcap (B \bigcap C) (AB)C=A(BC)
(A + B) + C=A + (B + C)
(AB)C = A(BC)
3.分配
( A ⋃ B ) ⋂ C = ( A ⋂ C ) ⋃ ( B ⋂ C ) (A \bigcup B) \bigcap C = (A \bigcap C)\bigcup(B \bigcap C) (AB)C=(AC)(BC)
( A ⋂ B ) ⋃ C = ( A ⋃ C ) ⋂ ( B ⋃ C ) (A \bigcap B) \bigcup C = (A \bigcup C)\bigcap(B \bigcup C) (AB)C=(AC)(BC)
(A + B)C = AC + BC
(AB) + C= (A+C) (B+C)

4.对偶
A ⋃ B ‾ = A ‾ ⋂ B ‾ \overline {A \bigcup B} = \overline A \bigcap \overline B AB=AB

A ⋂ B ‾ = A ‾ ⋃ B ‾ \overline {A \bigcap B} = \overline A \bigcup \overline B AB=AB

长短换,符号变

A 1 ⋃ A 2 ⋃ . . . ⋃ A n ‾ = A ‾ 1 ⋂ A ‾ 2 . . . ⋂ A ‾ n \overline {A_1 \bigcup A_2 \bigcup ...\bigcup A_n} =\overline A_1 \bigcap \overline A_2 ...\bigcap \overline A_n A1A2...An=A1A2...An

A 1 ⋂ A 2 ⋂ . . . ⋂ A n ‾ = A ‾ 1 ⋃ A ‾ 2 . . . ⋃ A ‾ n \overline {A_1 \bigcap A_2 \bigcap ...\bigcap A_n} =\overline A_1 \bigcup \overline A_2 ...\bigcup \overline A_n A1A2...An=A1A2...An

事件的概率
概率的初等描述
概率:发生的可能性大小 P(A).
性质
1. P ( Ω ) = 1. P ( ϕ ) = 0 P(\Omega) = 1.P(\phi) = 0 P(Ω)=1.P(ϕ)=0
2. 0 ≤ P ( A ) ≤ 1 0 \leq P(A) \leq 1 0P(A)1

古典概率模型
条件:
1.有限个样本点
2.等可能性

性质:
1.非负性 0 ≤ P ( A ) ≤ 1 0 \leq P(A) \leq 1 0P(A)1
2.规范性 P ( Ω ) = 1. P ( ϕ ) = 0 P(\Omega) = 1.P(\phi) = 0 P(Ω)=1.P(ϕ)=0
3.有限可加: A 1 . . . A n A_1 ... A_n A1...An互不相容
P ( A 1 + A 2 + . . . + A n ) = P ( A 1 ) + P ( A 2 ) + . . . + P ( A n ) P(A_1 + A_2 + ... + A_n) = P(A_1) + P(A_2) + ... + P(A_n) P(A1+A2+...+An)=P(A1)+P(A2)+...+P(An)

P ( A ) = A 的有利样本点 Ω 中样本点总数 P(A) = \frac{A的有利样本点}{\Omega 中样本点总数} P(A)=Ω中样本点总数A的有利样本点

几何概型
线段、平面、立体

P ( A ) = 几何度量 P(A) = 几何度量 P(A)=几何度量

频率与概率
n次试验,A发生了m, m n \frac{m}{n} nm就叫频率
ω n ( A ) \omega_n(A) ωn(A)
性质:1.非负. 0 ≤ ω n ( A ) ≤ 0 0 \leq \omega_n(A) \leq 0 0ωn(A)0
2.规范. ω n ( Ω ) = 1 , ω n ( ϕ ) = 0 \omega_n(\Omega)=1,\omega_n(\phi)=0 ωn(Ω)=1,ωn(ϕ)=0
3.可加形. A 1 , A 2 , … , A m A_1,A_2,\dots,A_m A1,A2,,Am互不相容
ω n ( A 1 + ⋯ + A m ) = ω n ( A 1 ) + ⋯ + ω n ( A m ) \omega_n(A_1+\dots+A_m)=\omega_n(A_1)+\dots+\omega_n(A_m) ωn(A1++Am)=ωn(A1)++ωn(Am)

频率的稳定值叫概率(内在属性,先于频率客观存在的)

公理化
描述、古典、几何、统计

公理1:
1.非负. 0 ≤ P ( A ) ≤ 0 0 \leq P(A) \leq 0 0P(A)0
2.规范. P ( Ω ) = 1 P(\Omega)=1 P(Ω)=1
3.完全可加. A 1 , A 2 , … , A m A_1,A_2,\dots,A_m A1,A2,,Am互不相容
P ( A 1 + A 2 + ⋯ + A m ) = P ( A 1 ) + P ( A 2 ) + ⋯ + P ( A m ) P(A_1+A_2+\dots+A_m) = P(A_1)+P(A_2)+\dots+P(A_m) P(A1+A2++Am)=P(A1)+P(A2)++P(Am)

性质1: P ( ϕ ) = 1 P(\phi)=1 P(ϕ)=1
Ω = Ω + ϕ + ϕ + … \Omega = \Omega + \phi + \phi + \dots Ω=Ω+ϕ+ϕ+
P ( Ω ) = P ( Ω + ϕ + …   ) = P ( Ω ) + P ( ϕ ) + … P(\Omega) = P(\Omega+\phi+\dots)=P(\Omega)+P(\phi)+\dots P(Ω)=P(Ω+ϕ+)=P(Ω)+P(ϕ)+
P ( ϕ ) + ⋯ = 0 , P ( ϕ ) ≥ 0 P(\phi) + \dots = 0,P(\phi) \geq 0 P(ϕ)+=0,P(ϕ)0
P ( ϕ ) = 0 P(\phi)= 0 P(ϕ)=0

性质2:有限可加, A 1 , A 2 , A 3 , … , A n A_1,A_2,A_3,\dots,A_n A1,A2,A3,,An互不相容
P ( A 1 + ⋯ + A n ) = P ( A 1 ) + ⋯ + P ( A n ) P(A_1+\dots+A_n)=P(A_1)+\dots+P(A_n) P(A1++An)=P(A1)++P(An)

性质3: P ( A ‾ ) = 1 − P ( A ) P(\overline A)=1-P(A) P(A)=1P(A)

推论 A 1 , … , A n A_1,\dots,A_n A1,,An 完备事件组 { 1. 两两互不相容 2. 并是 Ω 完备事件组\begin{cases}1.两两互不相容\\2.并是\Omega\end{cases} 完备事件组{1.两两互不相容2.并是Ω
P ( A 1 ) + P ( A 2 ) + ⋯ + P ( A n ) = 1 P(A_1)+P(A_2)+\dots+P(A_n)=1 P(A1)+P(A2)++P(An)=1

性质4: { 1. P ( A − B ) = P ( A ) − P ( A B ) 2. A ⊃ B . P ( A − B ) = P ( A ) − P ( B ) . 且 P ( A ) ≥ P ( B ) \begin{cases}1.P(A-B)=P(A)-P(AB)\\2.A\supset B.P(A-B)=P(A) - P(B).且P(A)\geq P(B)\end{cases} {1.P(AB)=P(A)P(AB)2.AB.P(AB)=P(A)P(B).P(A)P(B)

性质5(加法): P ( A + B ) = P ( A ) + P ( B ) − P ( A B ) P(A+B)=P(A) + P(B)-P(AB) P(A+B)=P(A)+P(B)P(AB)
P ( A + B + C ) = P ( A ) + P ( B ) + P ( C ) − P ( A B ) − P ( A C ) − P ( B C ) + P ( A B C ) P(A+B+C)=P(A) + P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC) P(A+B+C)=P(A)+P(B)+P(C)P(AB)P(AC)P(BC)+P(ABC)

条件概率
Ω 样本空间 , A 、 B 两个事件 \Omega 样本空间,A、B两个事件 Ω样本空间,AB两个事件
P ( B ) > 0 , 在 B 已经发生的条件下 A 发生的概率 P(B) > 0 ,在B已经发生的条件下A发生的概率 P(B)>0,B已经发生的条件下A发生的概率
A对B的条件概率 .P(A|B)

1. P ( A ∣ B ) = n A B n B 1.P(A|B)=\frac{n_{AB}}{n_B} 1.P(AB)=nBnAB

2. P ( A ∣ B ) = n A B n n B n = P ( A B ) P ( B ) 2.P(A|B)=\frac{\frac{n_{AB}}{n}}{\frac{n_B}{n}}=\frac{P(AB)}{P(B)} 2.P(AB)=nnBnnAB=P(B)P(AB)

{ 1. P ( A ∣ B ) ≥ 0 2. P ( Ω ∣ B ) = 1 3. A 1 , … , A n 互不相容 . P ( ∑ i = 1 ∞ A i ∣ B ) = ∑ i = 1 ∞ P ( A i ∣ B ) \begin{cases} 1.P(A|B) \geq 0\\ 2.P(\Omega|B)=1\\ 3.A_1,\dots,A_n互不相容. P(\sum\limits _{i=1}^\infty {A_i|B})=\sum\limits_{i=1}^\infty{P(A_i|B)} \end{cases} 1.P(AB)02.P(Ω∣B)=13.A1,,An互不相容.P(i=1AiB)=i=1P(AiB)

乘法公式
P ( A ) > 0 , P ( B ) > 0 P(A) > 0 ,P(B) > 0 P(A)>0,P(B)>0
{ 1 , P ( A B ) = P ( B ) P ( A ∣ B ) 2. P ( A B ) = P ( A ) P ( B ∣ A ) \begin{cases} 1,P(AB)=P(B)P(A|B)\\ 2.P(AB)=P(A)P(B|A) \end{cases} {1,P(AB)=P(B)P(AB)2.P(AB)=P(A)P(BA)

分步走
P ( A 1 A 2 … A n ) = P ( A 1 ) P ( A 2 ∣ A 1 ) P ( A 3 ∣ A 1 A 2 ) … P ( A n ∣ A 1 … A n ) P(A_1A_2\dots A_n)=P(A_1)P(A_2|A_1)P(A_3|A_1A_2)\dots P(A_n|A_1\dots A_n) P(A1A2An)=P(A1)P(A2A1)P(A3A1A2)P(AnA1An)

P ( A 1 A 2 A 3 ) = P ( A 1 ) P ( A 2 ∣ A 1 ) P ( A 3 ∣ A 1 A 2 ) P(A_1A_2A_3)=P(A_1)P(A_2|A_1)P(A_3|A_1A_2) P(A1A2A3)=P(A1)P(A2A1)P(A3A1A2)

全概率公式
定理1.2 A 1 , A 2 , … , A n A_1,A_2,\dots,A_n A1,A2,,An是的完备事件组

P ( B ) = ∑ i = 1 n P ( B ∣ A i ) P(B)=\sum \limits_{i=1}^n {P(B|A_i)} P(B)=i=1nP(BAi)

贝叶斯公式
知道结果 推导 原因

P ( A k ∣ B ) = P ( A k ) P ( B ∣ A k ) ∑ i = 1 n P ( A i ) P ( B ∣ A i ) = P ( A k B ) P ( B ) P(A_k|B)=\frac{P(A_k)P(B|A_k)}{\sum \limits _{i=1}^n {P(A_i)} P(B|A_i)} = \frac{P(A_kB)}{P(B)} P(AkB)=i=1nP(Ai)P(BAi)P(Ak)P(BAk)=P(B)P(AkB)

事件的独立性
定义: A发生的概率不受B发生的是否的影响
P ( A ∣ B ) = P ( A ) P(A|B)=P(A) P(AB)=P(A)

定理 P(A) > 0 , P(B) > 0
A,B独立 ⟺ \Longleftrightarrow P(AB) = P(A) P(B)

定义1.6: P(AB)=P(A)P(B) , A,B独立

定理1.5:
1.A,B独立. A 与 B ‾ , A ‾ 与 B , A ‾ 与 B ‾ A 与 \overline B,\overline A 与 B,\overline A 与 \overline B AB,AB,AB独立

2.P(A) = 0 或 P(A) = 1, A 与 任何事件都独立
P(A) = 0 与 ϕ \phi ϕ不一样
P(A) = 1 与 Ω \Omega Ω 不一样

独立: 可能性
互不相容: AB = ϕ \phi ϕ

伯努利模型
独立实验序列: E 1 , E 2 , … , E n E_1,E_2,\dots,E_n E1,E2,,En
n重独立实验: E , E , E , … , E E,E,E,\dots,E E,E,E,,E E n E^n En

伯努利实验:结果只有两种
n重伯努利实验: n次 独立 结果只有两种

定理:如果A的概率P(0<P<1), A ‾ \overline A A:1-P,
n重伯努利实验中A发生K次

P n ( k ) = C n k P k ( 1 − P ) n − k P_n(k) = C_n^k P^k(1-P)^{n-k} Pn(k)=CnkPk(1P)nk二项概率公式

随机变量
Ω    X = X ( ω ) 实值函数 \Omega \space \space X = X(\omega) 实值函数 Ω  X=X(ω)实值函数
X,Y,Z
事件  { ω ∣ X ( ω ) = a } = = { X = a } 事件 \space \{\omega|X(\omega)=a\} == \{X = a\} 事件 {ωX(ω)=a}=={X=a}
概率写法 P{X=a}

离散型:有限个 , 无限可列个
非离散型: 连续型(一个或多个区间)

离散型随机变量及其概率分布
X的所有取值 x k ( k = 1 , 2 , . . . ) 可列个 x_k(k=1,2,...)可列个 xk(k=1,2,...)可列个
概率函数(概率分布): P { x = x k } = P k P\{x=x_k\}=P_k P{x=xk}=Pk

分布表
X   1   2   3   4  5  6
P   1 6 \cfrac{1}{6} 61 1 6 \cfrac{1}{6} 61 1 6 \cfrac{1}{6} 61 1 6 \cfrac{1}{6} 61 1 6 \cfrac{1}{6} 61 1 6 \cfrac{1}{6} 61

概率函数图

连续型随机变量及其概率密度函数
频数(个数)
频率
组距

频数直方图

频率密度直方图
频率 组距 \cfrac{频率}{组距} 组距频率
1.面积 = 该组频率
2.所有面积之和 = 1
3.介于 x=a ,x=b之间的面积 近似 (a,b]的频率

若存在非负可积 f ( x ) . f ( x ) ≥ 0. a ≤ b . P { a < x ≤ b } = ∫ a b f ( x ) d x 若存在非负可积 f(x). f(x) \geq 0. a \leq b. P\{a < x \leq b \}= \int_a^b{f(x)dx} 若存在非负可积f(x).f(x)0.ab.P{a<xb}=abf(x)dx
f(x) :概率分布密度函数
1. f ( x ) ≥ 0 1.f(x) \geq 0 1.f(x)0
2. ∫ − ∞ + ∞ f ( x ) = 1 2. \int_{-\infty}^{+\infty} {f(x)} = 1 2.+f(x)=1
3. 连续变量取个别值概率为 0 3.连续变量取个别值概率为0 3.连续变量取个别值概率为0

连续型 端点可包含,可不包含

概率为0的事件未必不可能事件
概率为1的事件未必是必然事件

P { a ≤ x ≤ b } = ∫ a b f ( x ) d x P\{a \leq x \leq b\}=\int_a^b{f(x)dx} P{axb}=abf(x)dx

这个点的值是 X 取x附近值的大小

lim ⁡ Δ x − > 0 P { x < X < x + Δ x } Δ x = f ( x ) \lim\limits_{\Delta x ->0} {\cfrac{P\{x < X < x + \Delta x\}}{\Delta x}}=f(x) Δx>0limΔxP{x<X<x+Δx}=f(x)

概率为1
( − ∞ , + ∞ ) 内的密度 (-\infty,+\infty) 内的密度 (,+)内的密度

分布函数
F ( x ) = P ( X ≤ x ) F(x) = P(X \leq x) F(x)=P(Xx)
X的取值不超过x的概率

性质
1.0 ≤ F ( x ) ≤ 1. x ∈ ( − ∞ , + ∞ ) 1. 0 \leq F(x) \leq 1. x \in (-\infty,+\infty) 1.0F(x)1.x(,+)
2. F ( x ) 不减 . x 1 < x 2 . F ( x 1 ) ≤ F ( x 2 ) 2.F(x) 不减. x_1 < x_2. F(x_1) \leq F(x_2) 2.F(x)不减.x1<x2.F(x1)F(x2)

lim ⁡ x − > + ∞ F ( x ) = F ( + ∞ ) = 1 \lim\limits_{x->+\infty} {F(x)}=F(+\infty)=1 x>+limF(x)=F(+)=1
lim ⁡ x − > − ∞ F ( x ) = F ( − ∞ ) = 0 \lim\limits_{x->-\infty} {F(x)}=F(-\infty)=0 x>limF(x)=F()=0
3. F ( x ) 右连续 { 1. 离散, 右连续 2. 连续, 连续 3.F(x)右连续 \begin{cases}1.离散,\space 右连续\\ 2.连续 ,\space连续 \end{cases} 3.F(x)右连续{1.离散, 右连续2.连续, 连续
至多可列个间断点

从右边逼近 x = f(x)
右连续: lim ⁡ x − > a + F ( x ) = F ( a ) \lim\limits_{x->a^+}{F(x)}=F(a) x>a+limF(x)=F(a)
左连续: lim ⁡ x − > a − F ( x ) = F ( a ) \lim\limits_{x->a^-}{F(x)}=F(a) x>alimF(x)=F(a)
连续: lim ⁡ x − > a F ( x ) = F ( a ) \lim\limits_{x->a}{F(x)}=F(a) x>alimF(x)=F(a)

P { X ≤ a } = F ( a ) P\{X \leq a\} = F(a) P{Xa}=F(a)
P { X > a } = 1 − F ( a ) P\{X > a\} = 1 - F(a) P{X>a}=1F(a)
P { a < X ≤ b } = F ( b ) − F ( a ) P\{a < X \leq b\} = F(b) - F(a) P{a<Xb}=F(b)F(a)
P { X = a } = F ( a ) − F ( a − 0 ) P\{X=a\}=F(a) - F(a-0) P{X=a}=F(a)F(a0)
P { a ≤ X ≤ b } = F ( b ) − F ( a − 0 ) P\{a \leq X \leq b\} = F(b) - F(a-0) P{aXb}=F(b)F(a0)
P { X < a } = F ( a − 0 ) P\{X < a\} = F(a-0) P{X<a}=F(a0)
P { X ≥ 0 } = 1 − F ( a − 0 ) P\{X \geq 0\}= 1 - F(a-0) P{X0}=1F(a0)

分布函数 到 概率函数
间断点是 x k x_k xk是X的取值
P { X = x k } = F ( x k ) − F ( x k − 0 ) P\{X=x_k\}=F(x_k)-F(x_k-0) P{X=xk}=F(xk)F(xk0)

连续型
F ( x ) = P { X ≤ x } = ∫ − ∞ x f ( t ) d t F(x) = P\{X \leq x\}=\int_{-\infty}^x {f(t)dt} F(x)=P{Xx}=xf(t)dt

常见的分布

离散型分布
0-1分布
P { X = k } = P k ( 1 − P ) 1 − k P\{X = k\}=P^k(1-P)^{1-k} P{X=k}=Pk(1P)1k

有两种结果,只做一次试验

几何分布
P(A) = p,第K次首次发生,前k-1次未发生
P { X = k } = ( 1 − p ) k − 1 p P\{X=k\}=(1-p)^{k-1} p P{X=k}=(1p)k1p

二项分布
P(A) = p,n次试验,发生了k次
P ( X = k ) = C n k p k ( 1 − p ) n − k P(X = k) = C_n^k p^k (1-p)^{n-k} P(X=k)=Cnkpk(1p)nk

1.(n+1)p 不为整数, 取整最大值
2.是整数,(n+1)p (n+1)p-1是最值

泊松分布
P { X = k } = λ k k ! e − λ , k = 0 , 1 , 2 , 3 , . . . P\{X=k\}=\cfrac{\lambda^k}{k!}e^{-\lambda},k = 0,1,2,3,... P{X=k}=k!λkeλ,k=0,1,2,3,...
λ > 0 \lambda > 0 λ>0

二项分布
n比较大 p比较小(n>=100),np(<=10),可以用泊松分布近似
λ = n p \lambda = np λ=np

超几何分布
N 个元素: N 1 个属于第一类, N 2 个属于第二类,取 n 个。 X : n 个属于第一类的个数 N个元素:N_1个属于第一类,N_2个属于第二类,取n个。X:n个属于第一类的个数 N个元素:N1个属于第一类,N2个属于第二类,取n个。X:n个属于第一类的个数
P { X = k } = C N 1 k C N 2 n − k C N n P\{X = k\}= \cfrac{C_{N_1}^k C_{N_2}^{n-k} }{C_N^n} P{X=k}=CNnCN1kCN2nk

N很大,n相对于N很小
不放回抽样试验可以近似于二项分布

连续型分布

均匀分布

X X X ~ U [ a , b ] U[a,b] U[a,b]

f ( x ) = { 1 b − a ( a ≤ x ≤ b ) 0 ( e l s e ) f(x)=\begin{cases}\cfrac{1}{b-a}& (a\leq x \leq b)\\ 0 & (else)\end{cases} f(x)= ba10(axb)(else)
区间长度的倒数

分布函数
F ( x ) = { 0 ( x < a ) x − a b − a ( a ≤ x < b ) 1 ( b ≤ x ) F(x)=\begin{cases}0 & (x < a)\\ \cfrac{x-a}{b-a} & (a \leq x < b)\\ 1 & (b\leq x)\end{cases} F(x)= 0baxa1(x<a)(ax<b)(bx)

指数分布
F ( x ) = { λ e − λ x ( x > 0 ) 0 ( 0 ≤ x ) F(x)=\begin{cases} \lambda e^{-\lambda x} & (x > 0)\\ 0 & (0 \leq x)\end{cases} F(x)={λeλx0(x>0)(0x)

分布函数
F ( x ) = { 1 − e − λ x ( x > 0 ) 0 ( x ≤ 0 ) F(x)=\begin{cases} 1 - e^{-\lambda x}& (x > 0)\\ 0 & (x \leq 0) \end{cases} F(x)={1eλx0(x>0)(x0)

无记忆性

正态分布
ϕ ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 \phi(x)=\cfrac{1}{\sqrt{2\pi}\sigma} e^{-\cfrac{(x-\mu)^2}{2\sigma^2}} ϕ(x)=2π σ1e2σ2(xμ)2 ( − ∞ < x < + ∞ ) (-\infty<x < +\infty) (<x<+) X X X~ N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2)

∫ − ∞ + ∞ e − x 2 d x = π \int_{-\infty}^{+\infty} {e^{-x^2}dx}=\sqrt{\pi} +ex2dx=π

分布函数
Φ ( x ) = 1 2 π σ ∫ − ∞ x e − ( t − μ ) 2 2 σ 2 d t \Phi(x)=\cfrac{1}{\sqrt{2\pi}\sigma}\int_{-\infty}^x {e^{-\cfrac{(t-\mu)^2}{2\sigma^2}}}dt Φ(x)=2π σ1xe2σ2(tμ)2dt

性质1:以x = μ \mu μ 为对称轴. 钟型
x = μ \mu μ 时 , 最大值 1 2 π σ \cfrac{1}{\sqrt{2\pi}\sigma} 2π σ1

2.以x轴为渐近线
3. σ \sigma σ固定 μ \mu μ变化 左右移动
μ \mu μ固定 σ \sigma σ变化 σ \sigma σ变小 最高点上移
σ \sigma σ变大 最高点下移

标准正态分布
μ = 0 , σ = 1 \mu=0,\sigma=1 μ=0,σ=1
ϕ 0 ( x ) = 1 2 π e − x 2 2 \phi_0(x)=\cfrac{1}{\sqrt{2\pi}} e^{-\cfrac{x^2}{2}} ϕ0(x)=2π 1e2x2 ( − ∞ < x < + ∞ ) (-\infty<x < +\infty) (<x<+) X X X~ N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2)

分布函数
Φ ( x ) = 1 2 π ∫ − ∞ x e ( − t 2 2 ) d t \Phi(x)=\cfrac{1}{\sqrt{2\pi}}\int_{-\infty}^x {e^{(-\cfrac{t^2}{2})}}dt Φ(x)=2π 1xe(2t2)dt

性质:
y轴对称
ϕ 0 ( x ) = ϕ 0 ( − x ) \phi_0(x)=\phi_0(-x) ϕ0(x)=ϕ0(x)
Φ ( − x ) = 1 − Φ ( x ) \Phi(-x)=1 - \Phi(x) Φ(x)=1Φ(x)

转换标准型
ϕ ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 \phi(x)=\cfrac{1}{\sqrt{2\pi}\sigma} e^{-\cfrac{(x-\mu)^2}{2\sigma^2}} ϕ(x)=2π σ1e2σ2(xμ)2

= 1 σ [ 1 2 π e − ( x − μ σ ) 2 2 ] \frac{1}{\sigma}[\cfrac{1}{\sqrt{2\pi}} e^{-\cfrac{(\frac{x-\mu}{\sigma})^2}{2}}] σ1[2π 1e2(σxμ)2]

= 1 σ ϕ 0 ( x − u σ ) \frac{1}{\sigma} \phi_0(\frac{x-u}{\sigma}) σ1ϕ0(σxu)

分布函数转换

Φ ( x ) = Φ 0 ( x − μ σ ) \Phi(x)=\Phi_0(\frac{x-\mu}{\sigma}) Φ(x)=Φ0(σxμ)

3 σ 准则 3\sigma准则 3σ准则
μ − 3 σ \mu-3\sigma μ3σ- μ + 3 σ \mu + 3\sigma μ+3σ=0.99

给定 α \alpha α u α u_\alpha uα
P { x > u α } = α P\{x>u_\alpha\} = \alpha P{x>uα}=α
u α 叫上 α 分位数 u_\alpha 叫 上\alpha分位数 uα叫上α分位数

随机变量函数的分布
离散型
已知X 是某分布 Y = 3X - 5 ,Y是什么分布?

连续型

1. F Y ( x ) → F X ( x ) 1.F_Y{(x)} \rightarrow F_X{(x)} 1.FY(x)FX(x)
2. 求导  f Y ( x ) ← f X ( x ) 2.求导 \space f_Y{(x)} \leftarrow f_X{(x)} 2.求导 fY(x)fX(x)

二维随机变量

分布函数 :
F ( x , y ) = P { X ≤ x , Y ≤ y } F(x,y)=P\{X \leq x, Y \leq y \} F(x,y)=P{Xx,Yy} 联合分布

密度函数:
f ( x , y ) f(x,y) f(x,y)

1.  0 ≤ F ( x , y ) ≤ 1 0 \leq F(x,y) \leq 1 0F(x,y)1

2.  F ( x , y ) 不减, y 固定, x 1 < x 2 , F(x,y) 不减 ,y固定,x_1 < x_2, F(x,y)不减,y固定,x1<x2, F ( x 1 , y ) ≤ F ( x 2 , y ) F(x_1,y) \leq F(x_2,y) F(x1,y)F(x2,y)

3. F ( − ∞ , y ) = 0 F(-\infty,y)=0 F(,y)=0
F ( x , − ∞ ) = 0 F(x,-\infty) = 0 F(x,)=0
F ( − ∞ , − ∞ ) = 0 F(-\infty,-\infty)=0 F(,)=0
F ( + ∞ , + ∞ ) = 1 F(+\infty,+\infty)=1 F(+,+)=1

4. F ( x , y ) F(x,y) F(x,y) 分别关于x和y的右连续

5. x 1 < x 2 , y 1 < y 2 x_1<x_2,y_1<y_2 x1<x2,y1<y2
P { x 1 < x ≤ x 2 , y 1 < y ≤ y 2 } P\{x_1<x\leq x_2,y_1<y\leq y_2\} P{x1<xx2,y1<yy2}=
= F ( x 2 , y 2 ) − F ( x 2 , y 1 ) − F ( x 1 , y 2 ) + F ( x 1 , y 1 ) =F(x_2,y_2) - F(x_2,y1)-F(x_1,y_2) + F(x_1,y_1) =F(x2,y2)F(x2,y1)F(x1,y2)+F(x1,y1)

边缘分布
F X ( x ) = P { X ≤ x } = F ( x , + ∞ ) = P X ≤ x , Y < + ∞ F_X(x)=P\{X\leq x\}=F(x,+\infty)=P{X\leq x,Y<+\infty} FX(x)=P{Xx}=F(x,+)=PXx,Y<+

F Y ( y ) = P { Y ≤ y } = F ( + ∞ , y ) = P { X < + ∞ , Y ≤ y } F_Y(y)=P\{Y\leq y\}=F(+\infty,y)=P\{X<+\infty ,Y\leq y \} FY(y)=P{Yy}=F(+,y)=P{X<+,Yy}

二维离散型的联合分布及边缘分布
分布表

二维连续的联合密度和边缘分布

二重积分忘了 以后补

数学期望(均值)
平均数
加权平均数

离散型的数学期望

P ( x = x k ) = P k P(x=x_k)=P_k P(x=xk)=Pk
若 ∑ k = 1 ∞ x k p k 绝对收敛 若 \sum \limits_{k=1}^{\infty} {x_kp_k } 绝对收敛 k=1xkpk绝对收敛
E X = ∑ k = 1 ∞ x k p k EX = \sum \limits_{k=1}^{\infty} {x_kp_k } EX=k=1xkpk

连续型的数学期望
∫ − ∞ + ∞ x f ( x ) d x , 绝对收敛 \int _{-\infty}^{+\infty} {xf(x)dx},绝对收敛 +xf(x)dx,绝对收敛

数学期望的性质
1.常数的期望 = 常数
2.E(X+c) = EX + c
3.E(cX) = cEX
4.E(kX + b)=kEX + b
5.E(X + Y) = EX + EY

期望与方差总结

分布定义期望方差
0-1 P { X = k } = p k ( 1 − p ) 1 − k . k = 0 , 1 P\{X=k\}= p^k(1-p)^{1-k}. k=0,1 P{X=k}=pk(1p)1k.k=0,1ppq(q = 1 - p)
二项 P { X = k } = C n k p k q n − k . k = 0 , 1 , . . . P\{X=k\} =C_n^kp^kq^{n - k}. k=0,1,... P{X=k}=Cnkpkqnk.k=0,1,...npnpq
几何 P { X = k } = ( 1 − p ) k p . k = 1 , 2 , P\{X=k\} = (1-p)^kp.k=1,2, P{X=k}=(1p)kp.k=1,2, 1 p \cfrac{1}{p} p1 1 − p p 2 \cfrac{1-p}{p^2} p21p
泊松 P { X = k } = λ k k ! e − λ , k = 0 , 1 , 2 , 3 , . . . P\{X=k\}=\cfrac{\lambda^k}{k!}e^{-\lambda},k = 0,1,2,3,... P{X=k}=k!λkeλ,k=0,1,2,3,... λ \lambda λ λ \lambda λ
均匀 f ( x ) = { 1 b − a ( a ≤ x ≤ b ) 0 ( e l s e ) f(x)=\begin{cases}\cfrac{1}{b-a}& (a\leq x \leq b)\\0 & (else)\end{cases} f(x)= ba10(axb)(else) a + b 2 \cfrac{a+b}{2} 2a+b ( b − a ) 2 12 \cfrac{(b-a)^2}{12} 12(ba)2
指数 F ( x ) = { λ e − λ x ( x > 0 ) 0 ( 0 ≤ x ) F(x)=\begin{cases} \lambda e^{-\lambda x} & (x > 0)\\0 & (0 \leq x)\end{cases} F(x)={λeλx0(x>0)(0x) 1 λ \cfrac{1}{\lambda} λ1 1 λ 2 \cfrac{1}{\lambda^2} λ21
正态 ϕ ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 \phi(x)=\cfrac{1}{\sqrt{2\pi}\sigma} e^{-\cfrac{(x-\mu)^2}{2\sigma^2}} ϕ(x)=2π σ1e2σ2(xμ)2 ( − ∞ < x < + ∞ ) (-\infty<x < +\infty) (<x<+) X X X~ N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2) μ \mu μ σ 2 \sigma^2 σ2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值