排列组合
加法原理: 几种方案
乘法原理: 分几步
不重复排列
P n m = n ( n − 1 ) . . . ( n − m ) = n ! ( n − m ) ! P_n^m = n(n-1)...(n-m)= \frac{n!}{(n-m)!} Pnm=n(n−1)...(n−m)=(n−m)!n!
全排列
P
n
n
=
n
(
n
−
1
)
.
.
.
1
=
n
!
P_n^n = n (n-1)...1 = n!
Pnn=n(n−1)...1=n!
重复排列
n
m
n^m
nm
组合:从n个不同元素中取出m个不同元素.
C
n
m
=
P
n
m
m
!
=
n
!
m
!
(
n
−
m
)
!
C_n^m = \frac{P_n^m}{m!}= \frac{n!}{m!(n-m)!}
Cnm=m!Pnm=m!(n−m)!n!
C n m = C n n − m C_n^m = C_n^{n-m} Cnm=Cnn−m
C n 0 = C n n = 1 C_n^0 = C_n^n = 1 Cn0=Cnn=1
随机事件
试验:对客观事物 观察 测量.
随机试验:
1.在相同条件下可以重复.
2.结果不止一个.
3.无法预测结果.
事件:每种结果.
基本事件
相对于试验目的来说,不能再分.
复合事件
由基本事件复合
必然事件:
Ω
\Omega
Ω
不可能事件:
ϕ
\phi
ϕ
样本空间:所有基本事件的集合.
样本点:样本空间的元素.
ω
\omega
ω
事件间的关系
1.包含. A发生导致B发生
A
⊂
B
A \subset B
A⊂B A 包含于B
B
⊃
A
B \supset A
B⊃A B 包含 A
相等: A ⊂ B , B ⊃ A . A = B A \subset B, B \supset A.A = B A⊂B,B⊃A.A=B
2.并(和)(A B 至少一个发生)
A
⋃
B
(
A
+
B
)
A \bigcup B(A + B)
A⋃B(A+B)
3.交(积)(A B同时发生)
A
⋂
B
(
A
B
)
A \bigcap B (AB)
A⋂B(AB)
无限可列个: 按某种规律排成一个序列.
1.自然数 0,1,2,3,…
2.整数 0,1,-1,2,-2
3.有理数
p
q
\frac{p}{q}
qp
0.
5
˙
6
˙
=
x
0.\dot 5 \dot 6 = x
0.5˙6˙=x
56.
5
˙
6
˙
=
100
x
56.\dot 5 \dot 6 = 100x
56.5˙6˙=100x
56
=
99
x
56=99x
56=99x
x
=
56
99
x=\frac{56}{99}
x=9956
4.差(A 发生 B 不发生)
A
−
B
A - B
A−B
5.互不相容事件
A B 不同时发生
AB =
ϕ
\phi
ϕ
6.对立事件
A,B互不相容,且
A
⋃
B
=
ω
A \bigcup B = \omega
A⋃B=ω
A
B
=
ϕ
,
且
A
+
B
=
ω
AB=\phi,且 A+ B=\omega
AB=ϕ,且A+B=ω
1.
A
‾
是的逆
\overline A是的逆
A是的逆
A
‾
‾
=
A
\overline {\overline A}=A
A=A
2.
A
−
B
=
A
−
A
B
=
A
B
‾
A-B=A-AB=A\overline B
A−B=A−AB=AB
互不相容 与 对立的联系和区别
1.两事件对立,则一定互不相容
2.互不相容适用于多个事件,对应适用于两个事件
3.互不相容.不能同时发生,可以都不发生
对立,有且只有一个发生
7.完备事件组
A
1
,
A
2
,
.
.
.
,
A
n
两两互不相容
,
且
⋃
i
=
1
n
A
i
=
Ω
A_1,A_2,...,A_n两两互不相容,且 \bigcup\limits_{i=1}^n A_i = \Omega
A1,A2,...,An两两互不相容,且i=1⋃nAi=Ω
运算
1.交换.
A
⋃
B
=
B
⋃
A
.
A \bigcup B = B \bigcup A.
A⋃B=B⋃A.
A
⋂
B
=
B
⋂
A
.
A \bigcap B = B \bigcap A.
A⋂B=B⋂A.
A + B = B + A
AB = BA
2.结合
(
A
⋃
B
)
⋃
C
=
A
⋃
(
B
⋃
C
)
(A \bigcup B) \bigcup C = A \bigcup (B \bigcup C)
(A⋃B)⋃C=A⋃(B⋃C)
(
A
⋂
B
)
⋂
C
=
A
⋂
(
B
⋂
C
)
(A \bigcap B) \bigcap C = A \bigcap (B \bigcap C)
(A⋂B)⋂C=A⋂(B⋂C)
(A + B) + C=A + (B + C)
(AB)C = A(BC)
3.分配
(
A
⋃
B
)
⋂
C
=
(
A
⋂
C
)
⋃
(
B
⋂
C
)
(A \bigcup B) \bigcap C = (A \bigcap C)\bigcup(B \bigcap C)
(A⋃B)⋂C=(A⋂C)⋃(B⋂C)
(
A
⋂
B
)
⋃
C
=
(
A
⋃
C
)
⋂
(
B
⋃
C
)
(A \bigcap B) \bigcup C = (A \bigcup C)\bigcap(B \bigcup C)
(A⋂B)⋃C=(A⋃C)⋂(B⋃C)
(A + B)C = AC + BC
(AB) + C= (A+C) (B+C)
4.对偶
A
⋃
B
‾
=
A
‾
⋂
B
‾
\overline {A \bigcup B} = \overline A \bigcap \overline B
A⋃B=A⋂B
A ⋂ B ‾ = A ‾ ⋃ B ‾ \overline {A \bigcap B} = \overline A \bigcup \overline B A⋂B=A⋃B
长短换,符号变
A 1 ⋃ A 2 ⋃ . . . ⋃ A n ‾ = A ‾ 1 ⋂ A ‾ 2 . . . ⋂ A ‾ n \overline {A_1 \bigcup A_2 \bigcup ...\bigcup A_n} =\overline A_1 \bigcap \overline A_2 ...\bigcap \overline A_n A1⋃A2⋃...⋃An=A1⋂A2...⋂An
A 1 ⋂ A 2 ⋂ . . . ⋂ A n ‾ = A ‾ 1 ⋃ A ‾ 2 . . . ⋃ A ‾ n \overline {A_1 \bigcap A_2 \bigcap ...\bigcap A_n} =\overline A_1 \bigcup \overline A_2 ...\bigcup \overline A_n A1⋂A2⋂...⋂An=A1⋃A2...⋃An
事件的概率
概率的初等描述
概率:发生的可能性大小 P(A).
性质
1.
P
(
Ω
)
=
1.
P
(
ϕ
)
=
0
P(\Omega) = 1.P(\phi) = 0
P(Ω)=1.P(ϕ)=0
2.
0
≤
P
(
A
)
≤
1
0 \leq P(A) \leq 1
0≤P(A)≤1
古典概率模型
条件:
1.有限个样本点
2.等可能性
性质:
1.非负性
0
≤
P
(
A
)
≤
1
0 \leq P(A) \leq 1
0≤P(A)≤1
2.规范性
P
(
Ω
)
=
1.
P
(
ϕ
)
=
0
P(\Omega) = 1.P(\phi) = 0
P(Ω)=1.P(ϕ)=0
3.有限可加:
A
1
.
.
.
A
n
A_1 ... A_n
A1...An互不相容
P
(
A
1
+
A
2
+
.
.
.
+
A
n
)
=
P
(
A
1
)
+
P
(
A
2
)
+
.
.
.
+
P
(
A
n
)
P(A_1 + A_2 + ... + A_n) = P(A_1) + P(A_2) + ... + P(A_n)
P(A1+A2+...+An)=P(A1)+P(A2)+...+P(An)
P ( A ) = A 的有利样本点 Ω 中样本点总数 P(A) = \frac{A的有利样本点}{\Omega 中样本点总数} P(A)=Ω中样本点总数A的有利样本点
几何概型
线段、平面、立体
P ( A ) = 几何度量 P(A) = 几何度量 P(A)=几何度量
频率与概率
n次试验,A发生了m,
m
n
\frac{m}{n}
nm就叫频率
ω
n
(
A
)
\omega_n(A)
ωn(A)
性质:1.非负.
0
≤
ω
n
(
A
)
≤
0
0 \leq \omega_n(A) \leq 0
0≤ωn(A)≤0
2.规范.
ω
n
(
Ω
)
=
1
,
ω
n
(
ϕ
)
=
0
\omega_n(\Omega)=1,\omega_n(\phi)=0
ωn(Ω)=1,ωn(ϕ)=0
3.可加形.
A
1
,
A
2
,
…
,
A
m
A_1,A_2,\dots,A_m
A1,A2,…,Am互不相容
ω
n
(
A
1
+
⋯
+
A
m
)
=
ω
n
(
A
1
)
+
⋯
+
ω
n
(
A
m
)
\omega_n(A_1+\dots+A_m)=\omega_n(A_1)+\dots+\omega_n(A_m)
ωn(A1+⋯+Am)=ωn(A1)+⋯+ωn(Am)
频率的稳定值叫概率(内在属性,先于频率客观存在的)
公理化
描述、古典、几何、统计
公理1:
1.非负.
0
≤
P
(
A
)
≤
0
0 \leq P(A) \leq 0
0≤P(A)≤0
2.规范.
P
(
Ω
)
=
1
P(\Omega)=1
P(Ω)=1
3.完全可加.
A
1
,
A
2
,
…
,
A
m
A_1,A_2,\dots,A_m
A1,A2,…,Am互不相容
P
(
A
1
+
A
2
+
⋯
+
A
m
)
=
P
(
A
1
)
+
P
(
A
2
)
+
⋯
+
P
(
A
m
)
P(A_1+A_2+\dots+A_m) = P(A_1)+P(A_2)+\dots+P(A_m)
P(A1+A2+⋯+Am)=P(A1)+P(A2)+⋯+P(Am)
性质1:
P
(
ϕ
)
=
1
P(\phi)=1
P(ϕ)=1
Ω
=
Ω
+
ϕ
+
ϕ
+
…
\Omega = \Omega + \phi + \phi + \dots
Ω=Ω+ϕ+ϕ+…
P
(
Ω
)
=
P
(
Ω
+
ϕ
+
…
)
=
P
(
Ω
)
+
P
(
ϕ
)
+
…
P(\Omega) = P(\Omega+\phi+\dots)=P(\Omega)+P(\phi)+\dots
P(Ω)=P(Ω+ϕ+…)=P(Ω)+P(ϕ)+…
P
(
ϕ
)
+
⋯
=
0
,
P
(
ϕ
)
≥
0
P(\phi) + \dots = 0,P(\phi) \geq 0
P(ϕ)+⋯=0,P(ϕ)≥0
P
(
ϕ
)
=
0
P(\phi)= 0
P(ϕ)=0
性质2:有限可加,
A
1
,
A
2
,
A
3
,
…
,
A
n
A_1,A_2,A_3,\dots,A_n
A1,A2,A3,…,An互不相容
P
(
A
1
+
⋯
+
A
n
)
=
P
(
A
1
)
+
⋯
+
P
(
A
n
)
P(A_1+\dots+A_n)=P(A_1)+\dots+P(A_n)
P(A1+⋯+An)=P(A1)+⋯+P(An)
性质3: P ( A ‾ ) = 1 − P ( A ) P(\overline A)=1-P(A) P(A)=1−P(A)
推论
A
1
,
…
,
A
n
A_1,\dots,A_n
A1,…,An是
完备事件组
{
1.
两两互不相容
2.
并是
Ω
完备事件组\begin{cases}1.两两互不相容\\2.并是\Omega\end{cases}
完备事件组{1.两两互不相容2.并是Ω
P
(
A
1
)
+
P
(
A
2
)
+
⋯
+
P
(
A
n
)
=
1
P(A_1)+P(A_2)+\dots+P(A_n)=1
P(A1)+P(A2)+⋯+P(An)=1
性质4: { 1. P ( A − B ) = P ( A ) − P ( A B ) 2. A ⊃ B . P ( A − B ) = P ( A ) − P ( B ) . 且 P ( A ) ≥ P ( B ) \begin{cases}1.P(A-B)=P(A)-P(AB)\\2.A\supset B.P(A-B)=P(A) - P(B).且P(A)\geq P(B)\end{cases} {1.P(A−B)=P(A)−P(AB)2.A⊃B.P(A−B)=P(A)−P(B).且P(A)≥P(B)
性质5(加法):
P
(
A
+
B
)
=
P
(
A
)
+
P
(
B
)
−
P
(
A
B
)
P(A+B)=P(A) + P(B)-P(AB)
P(A+B)=P(A)+P(B)−P(AB)
P
(
A
+
B
+
C
)
=
P
(
A
)
+
P
(
B
)
+
P
(
C
)
−
P
(
A
B
)
−
P
(
A
C
)
−
P
(
B
C
)
+
P
(
A
B
C
)
P(A+B+C)=P(A) + P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC)
P(A+B+C)=P(A)+P(B)+P(C)−P(AB)−P(AC)−P(BC)+P(ABC)
条件概率
Ω
样本空间
,
A
、
B
两个事件
\Omega 样本空间,A、B两个事件
Ω样本空间,A、B两个事件
P
(
B
)
>
0
,
在
B
已经发生的条件下
A
发生的概率
P(B) > 0 ,在B已经发生的条件下A发生的概率
P(B)>0,在B已经发生的条件下A发生的概率
A对B的条件概率 .P(A|B)
1. P ( A ∣ B ) = n A B n B 1.P(A|B)=\frac{n_{AB}}{n_B} 1.P(A∣B)=nBnAB
2. P ( A ∣ B ) = n A B n n B n = P ( A B ) P ( B ) 2.P(A|B)=\frac{\frac{n_{AB}}{n}}{\frac{n_B}{n}}=\frac{P(AB)}{P(B)} 2.P(A∣B)=nnBnnAB=P(B)P(AB)
{ 1. P ( A ∣ B ) ≥ 0 2. P ( Ω ∣ B ) = 1 3. A 1 , … , A n 互不相容 . P ( ∑ i = 1 ∞ A i ∣ B ) = ∑ i = 1 ∞ P ( A i ∣ B ) \begin{cases} 1.P(A|B) \geq 0\\ 2.P(\Omega|B)=1\\ 3.A_1,\dots,A_n互不相容. P(\sum\limits _{i=1}^\infty {A_i|B})=\sum\limits_{i=1}^\infty{P(A_i|B)} \end{cases} ⎩ ⎨ ⎧1.P(A∣B)≥02.P(Ω∣B)=13.A1,…,An互不相容.P(i=1∑∞Ai∣B)=i=1∑∞P(Ai∣B)
乘法公式
P
(
A
)
>
0
,
P
(
B
)
>
0
P(A) > 0 ,P(B) > 0
P(A)>0,P(B)>0
{
1
,
P
(
A
B
)
=
P
(
B
)
P
(
A
∣
B
)
2.
P
(
A
B
)
=
P
(
A
)
P
(
B
∣
A
)
\begin{cases} 1,P(AB)=P(B)P(A|B)\\ 2.P(AB)=P(A)P(B|A) \end{cases}
{1,P(AB)=P(B)P(A∣B)2.P(AB)=P(A)P(B∣A)
分步走
P
(
A
1
A
2
…
A
n
)
=
P
(
A
1
)
P
(
A
2
∣
A
1
)
P
(
A
3
∣
A
1
A
2
)
…
P
(
A
n
∣
A
1
…
A
n
)
P(A_1A_2\dots A_n)=P(A_1)P(A_2|A_1)P(A_3|A_1A_2)\dots P(A_n|A_1\dots A_n)
P(A1A2…An)=P(A1)P(A2∣A1)P(A3∣A1A2)…P(An∣A1…An)
P ( A 1 A 2 A 3 ) = P ( A 1 ) P ( A 2 ∣ A 1 ) P ( A 3 ∣ A 1 A 2 ) P(A_1A_2A_3)=P(A_1)P(A_2|A_1)P(A_3|A_1A_2) P(A1A2A3)=P(A1)P(A2∣A1)P(A3∣A1A2)
全概率公式
定理1.2
A
1
,
A
2
,
…
,
A
n
A_1,A_2,\dots,A_n
A1,A2,…,An是的完备事件组
P ( B ) = ∑ i = 1 n P ( B ∣ A i ) P(B)=\sum \limits_{i=1}^n {P(B|A_i)} P(B)=i=1∑nP(B∣Ai)
贝叶斯公式
知道结果 推导 原因
P ( A k ∣ B ) = P ( A k ) P ( B ∣ A k ) ∑ i = 1 n P ( A i ) P ( B ∣ A i ) = P ( A k B ) P ( B ) P(A_k|B)=\frac{P(A_k)P(B|A_k)}{\sum \limits _{i=1}^n {P(A_i)} P(B|A_i)} = \frac{P(A_kB)}{P(B)} P(Ak∣B)=i=1∑nP(Ai)P(B∣Ai)P(Ak)P(B∣Ak)=P(B)P(AkB)
事件的独立性
定义: A发生的概率不受B发生的是否的影响
P
(
A
∣
B
)
=
P
(
A
)
P(A|B)=P(A)
P(A∣B)=P(A)
定理 P(A) > 0 , P(B) > 0
A,B独立
⟺
\Longleftrightarrow
⟺ P(AB) = P(A) P(B)
定义1.6: P(AB)=P(A)P(B) , A,B独立
定理1.5:
1.A,B独立.
A
与
B
‾
,
A
‾
与
B
,
A
‾
与
B
‾
A 与 \overline B,\overline A 与 B,\overline A 与 \overline B
A与B,A与B,A与B独立
2.P(A) = 0 或 P(A) = 1, A 与 任何事件都独立
P(A) = 0 与
ϕ
\phi
ϕ不一样
P(A) = 1 与
Ω
\Omega
Ω 不一样
独立: 可能性
互不相容: AB =
ϕ
\phi
ϕ
伯努利模型
独立实验序列:
E
1
,
E
2
,
…
,
E
n
E_1,E_2,\dots,E_n
E1,E2,…,En
n重独立实验:
E
,
E
,
E
,
…
,
E
E,E,E,\dots,E
E,E,E,…,E
E
n
E^n
En
伯努利实验:结果只有两种
n重伯努利实验: n次 独立 结果只有两种
定理:如果A的概率P(0<P<1),
A
‾
\overline A
A:1-P,
n重伯努利实验中A发生K次
P n ( k ) = C n k P k ( 1 − P ) n − k P_n(k) = C_n^k P^k(1-P)^{n-k} Pn(k)=CnkPk(1−P)n−k:二项概率公式
随机变量
Ω
X
=
X
(
ω
)
实值函数
\Omega \space \space X = X(\omega) 实值函数
Ω X=X(ω)实值函数
X,Y,Z
事件
{
ω
∣
X
(
ω
)
=
a
}
=
=
{
X
=
a
}
事件 \space \{\omega|X(\omega)=a\} == \{X = a\}
事件 {ω∣X(ω)=a}=={X=a}
概率写法 P{X=a}
离散型:有限个 , 无限可列个
非离散型: 连续型(一个或多个区间)
离散型随机变量及其概率分布
X的所有取值
x
k
(
k
=
1
,
2
,
.
.
.
)
可列个
x_k(k=1,2,...)可列个
xk(k=1,2,...)可列个
概率函数(概率分布):
P
{
x
=
x
k
}
=
P
k
P\{x=x_k\}=P_k
P{x=xk}=Pk
分布表
X 1 2 3 4 5 6
P
1
6
\cfrac{1}{6}
61
1
6
\cfrac{1}{6}
61
1
6
\cfrac{1}{6}
61
1
6
\cfrac{1}{6}
61
1
6
\cfrac{1}{6}
61
1
6
\cfrac{1}{6}
61
概率函数图
连续型随机变量及其概率密度函数
频数(个数)
频率
组距
频数直方图
频率密度直方图
频率
组距
\cfrac{频率}{组距}
组距频率
1.面积 = 该组频率
2.所有面积之和 = 1
3.介于 x=a ,x=b之间的面积 近似 (a,b]的频率
若存在非负可积
f
(
x
)
.
f
(
x
)
≥
0.
a
≤
b
.
P
{
a
<
x
≤
b
}
=
∫
a
b
f
(
x
)
d
x
若存在非负可积 f(x). f(x) \geq 0. a \leq b. P\{a < x \leq b \}= \int_a^b{f(x)dx}
若存在非负可积f(x).f(x)≥0.a≤b.P{a<x≤b}=∫abf(x)dx
f(x) :概率分布密度函数
1.
f
(
x
)
≥
0
1.f(x) \geq 0
1.f(x)≥0
2.
∫
−
∞
+
∞
f
(
x
)
=
1
2. \int_{-\infty}^{+\infty} {f(x)} = 1
2.∫−∞+∞f(x)=1
3.
连续变量取个别值概率为
0
3.连续变量取个别值概率为0
3.连续变量取个别值概率为0
连续型 端点可包含,可不包含
概率为0的事件未必不可能事件
概率为1的事件未必是必然事件
P { a ≤ x ≤ b } = ∫ a b f ( x ) d x P\{a \leq x \leq b\}=\int_a^b{f(x)dx} P{a≤x≤b}=∫abf(x)dx
这个点的值是 X 取x附近值的大小
lim Δ x − > 0 P { x < X < x + Δ x } Δ x = f ( x ) \lim\limits_{\Delta x ->0} {\cfrac{P\{x < X < x + \Delta x\}}{\Delta x}}=f(x) Δx−>0limΔxP{x<X<x+Δx}=f(x)
概率为1
(
−
∞
,
+
∞
)
内的密度
(-\infty,+\infty) 内的密度
(−∞,+∞)内的密度
分布函数
F
(
x
)
=
P
(
X
≤
x
)
F(x) = P(X \leq x)
F(x)=P(X≤x)
X的取值不超过x的概率
性质
1.0
≤
F
(
x
)
≤
1.
x
∈
(
−
∞
,
+
∞
)
1. 0 \leq F(x) \leq 1. x \in (-\infty,+\infty)
1.0≤F(x)≤1.x∈(−∞,+∞)
2.
F
(
x
)
不减
.
x
1
<
x
2
.
F
(
x
1
)
≤
F
(
x
2
)
2.F(x) 不减. x_1 < x_2. F(x_1) \leq F(x_2)
2.F(x)不减.x1<x2.F(x1)≤F(x2)
lim
x
−
>
+
∞
F
(
x
)
=
F
(
+
∞
)
=
1
\lim\limits_{x->+\infty} {F(x)}=F(+\infty)=1
x−>+∞limF(x)=F(+∞)=1
lim
x
−
>
−
∞
F
(
x
)
=
F
(
−
∞
)
=
0
\lim\limits_{x->-\infty} {F(x)}=F(-\infty)=0
x−>−∞limF(x)=F(−∞)=0
3.
F
(
x
)
右连续
{
1.
离散, 右连续
2.
连续, 连续
3.F(x)右连续 \begin{cases}1.离散,\space 右连续\\ 2.连续 ,\space连续 \end{cases}
3.F(x)右连续{1.离散, 右连续2.连续, 连续
至多可列个间断点
从右边逼近 x = f(x)
右连续:
lim
x
−
>
a
+
F
(
x
)
=
F
(
a
)
\lim\limits_{x->a^+}{F(x)}=F(a)
x−>a+limF(x)=F(a)
左连续:
lim
x
−
>
a
−
F
(
x
)
=
F
(
a
)
\lim\limits_{x->a^-}{F(x)}=F(a)
x−>a−limF(x)=F(a)
连续:
lim
x
−
>
a
F
(
x
)
=
F
(
a
)
\lim\limits_{x->a}{F(x)}=F(a)
x−>alimF(x)=F(a)
P
{
X
≤
a
}
=
F
(
a
)
P\{X \leq a\} = F(a)
P{X≤a}=F(a)
P
{
X
>
a
}
=
1
−
F
(
a
)
P\{X > a\} = 1 - F(a)
P{X>a}=1−F(a)
P
{
a
<
X
≤
b
}
=
F
(
b
)
−
F
(
a
)
P\{a < X \leq b\} = F(b) - F(a)
P{a<X≤b}=F(b)−F(a)
P
{
X
=
a
}
=
F
(
a
)
−
F
(
a
−
0
)
P\{X=a\}=F(a) - F(a-0)
P{X=a}=F(a)−F(a−0)
P
{
a
≤
X
≤
b
}
=
F
(
b
)
−
F
(
a
−
0
)
P\{a \leq X \leq b\} = F(b) - F(a-0)
P{a≤X≤b}=F(b)−F(a−0)
P
{
X
<
a
}
=
F
(
a
−
0
)
P\{X < a\} = F(a-0)
P{X<a}=F(a−0)
P
{
X
≥
0
}
=
1
−
F
(
a
−
0
)
P\{X \geq 0\}= 1 - F(a-0)
P{X≥0}=1−F(a−0)
分布函数 到 概率函数
间断点是
x
k
x_k
xk是X的取值
P
{
X
=
x
k
}
=
F
(
x
k
)
−
F
(
x
k
−
0
)
P\{X=x_k\}=F(x_k)-F(x_k-0)
P{X=xk}=F(xk)−F(xk−0)
连续型
F
(
x
)
=
P
{
X
≤
x
}
=
∫
−
∞
x
f
(
t
)
d
t
F(x) = P\{X \leq x\}=\int_{-\infty}^x {f(t)dt}
F(x)=P{X≤x}=∫−∞xf(t)dt
常见的分布
离散型分布
0-1分布
P
{
X
=
k
}
=
P
k
(
1
−
P
)
1
−
k
P\{X = k\}=P^k(1-P)^{1-k}
P{X=k}=Pk(1−P)1−k
有两种结果,只做一次试验
几何分布
P(A) = p,第K次首次发生,前k-1次未发生
P
{
X
=
k
}
=
(
1
−
p
)
k
−
1
p
P\{X=k\}=(1-p)^{k-1} p
P{X=k}=(1−p)k−1p
二项分布
P(A) = p,n次试验,发生了k次
P
(
X
=
k
)
=
C
n
k
p
k
(
1
−
p
)
n
−
k
P(X = k) = C_n^k p^k (1-p)^{n-k}
P(X=k)=Cnkpk(1−p)n−k
1.(n+1)p 不为整数, 取整最大值
2.是整数,(n+1)p (n+1)p-1是最值
泊松分布
P
{
X
=
k
}
=
λ
k
k
!
e
−
λ
,
k
=
0
,
1
,
2
,
3
,
.
.
.
P\{X=k\}=\cfrac{\lambda^k}{k!}e^{-\lambda},k = 0,1,2,3,...
P{X=k}=k!λke−λ,k=0,1,2,3,...
λ
>
0
\lambda > 0
λ>0
二项分布
n比较大 p比较小(n>=100),np(<=10),可以用泊松分布近似
λ
=
n
p
\lambda = np
λ=np
超几何分布
N
个元素:
N
1
个属于第一类,
N
2
个属于第二类,取
n
个。
X
:
n
个属于第一类的个数
N个元素:N_1个属于第一类,N_2个属于第二类,取n个。X:n个属于第一类的个数
N个元素:N1个属于第一类,N2个属于第二类,取n个。X:n个属于第一类的个数
P
{
X
=
k
}
=
C
N
1
k
C
N
2
n
−
k
C
N
n
P\{X = k\}= \cfrac{C_{N_1}^k C_{N_2}^{n-k} }{C_N^n}
P{X=k}=CNnCN1kCN2n−k
N很大,n相对于N很小
不放回抽样试验可以近似于二项分布
连续型分布
均匀分布
X X X ~ U [ a , b ] U[a,b] U[a,b]
f
(
x
)
=
{
1
b
−
a
(
a
≤
x
≤
b
)
0
(
e
l
s
e
)
f(x)=\begin{cases}\cfrac{1}{b-a}& (a\leq x \leq b)\\ 0 & (else)\end{cases}
f(x)=⎩
⎨
⎧b−a10(a≤x≤b)(else)
区间长度的倒数
分布函数
F
(
x
)
=
{
0
(
x
<
a
)
x
−
a
b
−
a
(
a
≤
x
<
b
)
1
(
b
≤
x
)
F(x)=\begin{cases}0 & (x < a)\\ \cfrac{x-a}{b-a} & (a \leq x < b)\\ 1 & (b\leq x)\end{cases}
F(x)=⎩
⎨
⎧0b−ax−a1(x<a)(a≤x<b)(b≤x)
指数分布
F
(
x
)
=
{
λ
e
−
λ
x
(
x
>
0
)
0
(
0
≤
x
)
F(x)=\begin{cases} \lambda e^{-\lambda x} & (x > 0)\\ 0 & (0 \leq x)\end{cases}
F(x)={λe−λx0(x>0)(0≤x)
分布函数
F
(
x
)
=
{
1
−
e
−
λ
x
(
x
>
0
)
0
(
x
≤
0
)
F(x)=\begin{cases} 1 - e^{-\lambda x}& (x > 0)\\ 0 & (x \leq 0) \end{cases}
F(x)={1−e−λx0(x>0)(x≤0)
无记忆性
正态分布
ϕ
(
x
)
=
1
2
π
σ
e
−
(
x
−
μ
)
2
2
σ
2
\phi(x)=\cfrac{1}{\sqrt{2\pi}\sigma} e^{-\cfrac{(x-\mu)^2}{2\sigma^2}}
ϕ(x)=2πσ1e−2σ2(x−μ)2
(
−
∞
<
x
<
+
∞
)
(-\infty<x < +\infty)
(−∞<x<+∞)
X
X
X~
N
(
μ
,
σ
2
)
N(\mu,\sigma^2)
N(μ,σ2)
∫ − ∞ + ∞ e − x 2 d x = π \int_{-\infty}^{+\infty} {e^{-x^2}dx}=\sqrt{\pi} ∫−∞+∞e−x2dx=π
分布函数
Φ
(
x
)
=
1
2
π
σ
∫
−
∞
x
e
−
(
t
−
μ
)
2
2
σ
2
d
t
\Phi(x)=\cfrac{1}{\sqrt{2\pi}\sigma}\int_{-\infty}^x {e^{-\cfrac{(t-\mu)^2}{2\sigma^2}}}dt
Φ(x)=2πσ1∫−∞xe−2σ2(t−μ)2dt
性质1:以x =
μ
\mu
μ 为对称轴. 钟型
x =
μ
\mu
μ 时 , 最大值
1
2
π
σ
\cfrac{1}{\sqrt{2\pi}\sigma}
2πσ1
2.以x轴为渐近线
3.
σ
\sigma
σ固定
μ
\mu
μ变化 左右移动
μ
\mu
μ固定
σ
\sigma
σ变化
σ
\sigma
σ变小 最高点上移
σ
\sigma
σ变大 最高点下移
标准正态分布
μ
=
0
,
σ
=
1
\mu=0,\sigma=1
μ=0,σ=1
ϕ
0
(
x
)
=
1
2
π
e
−
x
2
2
\phi_0(x)=\cfrac{1}{\sqrt{2\pi}} e^{-\cfrac{x^2}{2}}
ϕ0(x)=2π1e−2x2
(
−
∞
<
x
<
+
∞
)
(-\infty<x < +\infty)
(−∞<x<+∞)
X
X
X~
N
(
μ
,
σ
2
)
N(\mu,\sigma^2)
N(μ,σ2)
分布函数
Φ
(
x
)
=
1
2
π
∫
−
∞
x
e
(
−
t
2
2
)
d
t
\Phi(x)=\cfrac{1}{\sqrt{2\pi}}\int_{-\infty}^x {e^{(-\cfrac{t^2}{2})}}dt
Φ(x)=2π1∫−∞xe(−2t2)dt
性质:
y轴对称
ϕ
0
(
x
)
=
ϕ
0
(
−
x
)
\phi_0(x)=\phi_0(-x)
ϕ0(x)=ϕ0(−x)
Φ
(
−
x
)
=
1
−
Φ
(
x
)
\Phi(-x)=1 - \Phi(x)
Φ(−x)=1−Φ(x)
转换标准型
ϕ
(
x
)
=
1
2
π
σ
e
−
(
x
−
μ
)
2
2
σ
2
\phi(x)=\cfrac{1}{\sqrt{2\pi}\sigma} e^{-\cfrac{(x-\mu)^2}{2\sigma^2}}
ϕ(x)=2πσ1e−2σ2(x−μ)2
= 1 σ [ 1 2 π e − ( x − μ σ ) 2 2 ] \frac{1}{\sigma}[\cfrac{1}{\sqrt{2\pi}} e^{-\cfrac{(\frac{x-\mu}{\sigma})^2}{2}}] σ1[2π1e−2(σx−μ)2]
= 1 σ ϕ 0 ( x − u σ ) \frac{1}{\sigma} \phi_0(\frac{x-u}{\sigma}) σ1ϕ0(σx−u)
分布函数转换
Φ ( x ) = Φ 0 ( x − μ σ ) \Phi(x)=\Phi_0(\frac{x-\mu}{\sigma}) Φ(x)=Φ0(σx−μ)
3
σ
准则
3\sigma准则
3σ准则
μ
−
3
σ
\mu-3\sigma
μ−3σ-
μ
+
3
σ
\mu + 3\sigma
μ+3σ=0.99
给定
α
\alpha
α 找
u
α
u_\alpha
uα
P
{
x
>
u
α
}
=
α
P\{x>u_\alpha\} = \alpha
P{x>uα}=α
u
α
叫上
α
分位数
u_\alpha 叫 上\alpha分位数
uα叫上α分位数
随机变量函数的分布
离散型
已知X 是某分布 Y = 3X - 5 ,Y是什么分布?
连续型
1.
F
Y
(
x
)
→
F
X
(
x
)
1.F_Y{(x)} \rightarrow F_X{(x)}
1.FY(x)→FX(x)
2.
求导
f
Y
(
x
)
←
f
X
(
x
)
2.求导 \space f_Y{(x)} \leftarrow f_X{(x)}
2.求导 fY(x)←fX(x)
二维随机变量
分布函数 :
F
(
x
,
y
)
=
P
{
X
≤
x
,
Y
≤
y
}
F(x,y)=P\{X \leq x, Y \leq y \}
F(x,y)=P{X≤x,Y≤y} 联合分布
密度函数:
f
(
x
,
y
)
f(x,y)
f(x,y)
1. 0 ≤ F ( x , y ) ≤ 1 0 \leq F(x,y) \leq 1 0≤F(x,y)≤1
2. F ( x , y ) 不减, y 固定, x 1 < x 2 , F(x,y) 不减 ,y固定,x_1 < x_2, F(x,y)不减,y固定,x1<x2, F ( x 1 , y ) ≤ F ( x 2 , y ) F(x_1,y) \leq F(x_2,y) F(x1,y)≤F(x2,y)
3.
F
(
−
∞
,
y
)
=
0
F(-\infty,y)=0
F(−∞,y)=0
F
(
x
,
−
∞
)
=
0
F(x,-\infty) = 0
F(x,−∞)=0
F
(
−
∞
,
−
∞
)
=
0
F(-\infty,-\infty)=0
F(−∞,−∞)=0
F
(
+
∞
,
+
∞
)
=
1
F(+\infty,+\infty)=1
F(+∞,+∞)=1
4. F ( x , y ) F(x,y) F(x,y) 分别关于x和y的右连续
5.
x
1
<
x
2
,
y
1
<
y
2
x_1<x_2,y_1<y_2
x1<x2,y1<y2
P
{
x
1
<
x
≤
x
2
,
y
1
<
y
≤
y
2
}
P\{x_1<x\leq x_2,y_1<y\leq y_2\}
P{x1<x≤x2,y1<y≤y2}=
=
F
(
x
2
,
y
2
)
−
F
(
x
2
,
y
1
)
−
F
(
x
1
,
y
2
)
+
F
(
x
1
,
y
1
)
=F(x_2,y_2) - F(x_2,y1)-F(x_1,y_2) + F(x_1,y_1)
=F(x2,y2)−F(x2,y1)−F(x1,y2)+F(x1,y1)
边缘分布
F
X
(
x
)
=
P
{
X
≤
x
}
=
F
(
x
,
+
∞
)
=
P
X
≤
x
,
Y
<
+
∞
F_X(x)=P\{X\leq x\}=F(x,+\infty)=P{X\leq x,Y<+\infty}
FX(x)=P{X≤x}=F(x,+∞)=PX≤x,Y<+∞
F Y ( y ) = P { Y ≤ y } = F ( + ∞ , y ) = P { X < + ∞ , Y ≤ y } F_Y(y)=P\{Y\leq y\}=F(+\infty,y)=P\{X<+\infty ,Y\leq y \} FY(y)=P{Y≤y}=F(+∞,y)=P{X<+∞,Y≤y}
二维离散型的联合分布及边缘分布
分布表
二维连续的联合密度和边缘分布
二重积分忘了 以后补
数学期望(均值)
平均数
加权平均数
离散型的数学期望
P
(
x
=
x
k
)
=
P
k
P(x=x_k)=P_k
P(x=xk)=Pk
若
∑
k
=
1
∞
x
k
p
k
绝对收敛
若 \sum \limits_{k=1}^{\infty} {x_kp_k } 绝对收敛
若k=1∑∞xkpk绝对收敛
E
X
=
∑
k
=
1
∞
x
k
p
k
EX = \sum \limits_{k=1}^{\infty} {x_kp_k }
EX=k=1∑∞xkpk
连续型的数学期望
∫
−
∞
+
∞
x
f
(
x
)
d
x
,
绝对收敛
\int _{-\infty}^{+\infty} {xf(x)dx},绝对收敛
∫−∞+∞xf(x)dx,绝对收敛
数学期望的性质
1.常数的期望 = 常数
2.E(X+c) = EX + c
3.E(cX) = cEX
4.E(kX + b)=kEX + b
5.E(X + Y) = EX + EY
期望与方差总结
分布 | 定义 | 期望 | 方差 |
---|---|---|---|
0-1 | P { X = k } = p k ( 1 − p ) 1 − k . k = 0 , 1 P\{X=k\}= p^k(1-p)^{1-k}. k=0,1 P{X=k}=pk(1−p)1−k.k=0,1 | p | pq(q = 1 - p) |
二项 | P { X = k } = C n k p k q n − k . k = 0 , 1 , . . . P\{X=k\} =C_n^kp^kq^{n - k}. k=0,1,... P{X=k}=Cnkpkqn−k.k=0,1,... | np | npq |
几何 | P { X = k } = ( 1 − p ) k p . k = 1 , 2 , P\{X=k\} = (1-p)^kp.k=1,2, P{X=k}=(1−p)kp.k=1,2,… | 1 p \cfrac{1}{p} p1 | 1 − p p 2 \cfrac{1-p}{p^2} p21−p |
泊松 | P { X = k } = λ k k ! e − λ , k = 0 , 1 , 2 , 3 , . . . P\{X=k\}=\cfrac{\lambda^k}{k!}e^{-\lambda},k = 0,1,2,3,... P{X=k}=k!λke−λ,k=0,1,2,3,... | λ \lambda λ | λ \lambda λ |
均匀 | f ( x ) = { 1 b − a ( a ≤ x ≤ b ) 0 ( e l s e ) f(x)=\begin{cases}\cfrac{1}{b-a}& (a\leq x \leq b)\\0 & (else)\end{cases} f(x)=⎩ ⎨ ⎧b−a10(a≤x≤b)(else) | a + b 2 \cfrac{a+b}{2} 2a+b | ( b − a ) 2 12 \cfrac{(b-a)^2}{12} 12(b−a)2 |
指数 | F ( x ) = { λ e − λ x ( x > 0 ) 0 ( 0 ≤ x ) F(x)=\begin{cases} \lambda e^{-\lambda x} & (x > 0)\\0 & (0 \leq x)\end{cases} F(x)={λe−λx0(x>0)(0≤x) | 1 λ \cfrac{1}{\lambda} λ1 | 1 λ 2 \cfrac{1}{\lambda^2} λ21 |
正态 | ϕ ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 \phi(x)=\cfrac{1}{\sqrt{2\pi}\sigma} e^{-\cfrac{(x-\mu)^2}{2\sigma^2}} ϕ(x)=2πσ1e−2σ2(x−μ)2 ( − ∞ < x < + ∞ ) (-\infty<x < +\infty) (−∞<x<+∞) X X X~ N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2) | μ \mu μ | σ 2 \sigma^2 σ2 |