an
带符号整形四舍五入
tScore =static_cast<int>(tScore/10.0 +((tScore>>(sizeof(tScore)*8 - 1))) + 0.5) *10;
类初始化
1.没有虚函数
memset(this ,0,sizeof(ClassName));
2.有虚函数(不知道对不对)
int a =(int)((this));
memset((void *)(a + 4) ,0,sizeof(ClassName));
字符大小写互换
str[i] = str[i] ^ 0x20;
#include <iso646.h>
可以使用宏 or and not 等等
#ifdef _WIN64
#define offsetof(s,m) (size_t)( (ptrdiff_t)&reinterpret_cast<const volatile char&>((((s *)0)->m)) )
#else
#define offsetof(s,m) (size_t)&reinterpret_cast<const volatile char&>((((s *)0)->m))
#endif
vs 输入提示 Ctrl+Alt+t
//是否是素数
质数还有一个特点,就是它总是等于 6x-1 或者 6x+1,其中 x 是大于等于1的自然数。
如何论证这个结论呢,其实不难。首先 6x 肯定不是质数,因为它能被 6 整除;其次 6x+2 肯定也不是质数,因为它还能被2整除;依次类推,6x+3 肯定能被 3 整除;6x+4 肯定能被 2 整除。那么,就只有 6x+1 和 6x+5 (即等同于6x-1) 可能是质数了。所以循环的步长可以设为 6,然后每次只判断 6 两侧的数即可
bool IsPrime(int n)
{
if (n % 6 != 1 && n % 6 != 5)
return false;
for (int i = 5; i <= sqrt(n); i += 6)
{
if (n % i == 0 || n % (i + 2) == 0)
return false;
}
return true;
}
//公约数
long long gcd(long long a, long long b)
{
if (b == 0) return a;
return gcd(b, a%b);
}
//公倍数
long long lcm(long long a, long long b)
{
return a / gcd(a, b)*b;
}
c++设置宽度和精度
//设置宽度
cout << 123 << endl;
cout.width(10);
cout << 123 << endl;
//设置宽度 + 填充数据
cout.width(10);
cout.fill('0');
cout << 123 << endl;
cout << setw(4) << 123.0 << endl;
//cout << fixed;
//设置精度 fixed 固定位数
double a = 1.23456789;
cout << fixed<<setprecision(8) << (double)123.0 << endl;
cout << setprecision(8) << a << endl;
设置字符集
wchar_t str[20] = L"你好吗";
wcout.imbue(locale("CHS"));
wcout << str << endl;
n&(n-1)作用:将n的二进制表示中的最低位为1的改为0
n&-n 树状数组
std::atomic_flag a = ATOMIC_FLAG_INIT;
std::atomic<bool> b(true);
//加载数据
bool x = b.load(std::memory_order_acquire);
//存储
b.store(true);
//替换
x = b.exchange(false, std::memory_order_acq_rel);
//windows debug内存泄露检测//内存泄露检测
inline void EnableMemLeakCheck()
{
_CrtSetDbgFlag(_CrtSetDbgFlag(_CRTDBG_REPORT_FLAG) | _CRTDBG_LEAK_CHECK_DF);
}
#ifdef _DEBUG
#define new new(_NORMAL_BLOCK, __FILE__, __LINE__)
#endif
消除警告
UNREFERENCED_PARAMETER(hPrevInstance);
UNREFERENCED_PARAMETER(lpCmdLine);
最大最小元素对
minmax_element(a.begin(),a.end());
string 与CString互换
string name = (CStringA)m_user;
CString m_user;
m_user = it->first.c_str();
%nd 输出的整型宽度至少为n位,右对齐,%5d即宽度至少为5位,位数大于5则输出实际位数
%0nd 用得比较多,表示输出的整型宽度至少为n位,不足n位用0填充
全排列
首先从后向前查找第一个顺序对 (i,i+1)(i,i+1),满足 a[i] < a[i+1]a[i]<a[i+1]。这样「较小数」即为 a[i]a[i]。此时 [i+1,n)[i+1,n) 必然是下降序列。
如果找到了顺序对,那么在区间 [i+1,n)[i+1,n) 中从后向前查找第一个元素 jj 满足 a[i] < a[j]a[i]<a[j]。这样「较大数」即为 a[j]a[j]。
交换 a[i]a[i] 与 a[j]a[j],此时可以证明区间 [i+1,n)[i+1,n) 必为降序。我们可以直接使用双指针反转区间 [i+1,n)[i+1,n) 使其变为升序,而无需对该区间进行排序。
void nextPermutation(vector<int>& nums) {
static auto speedup = [](){ios::sync_with_stdio(false);cin.tie(nullptr);return nullptr;}();
if(nums.size() < 2) return ;
auto beBig = [](int a,int b){return a < b;};
int index = -1;
for(int i = nums.size() - 2;i>=0;--i){
if(beBig(nums[i],nums[i+1])){
index = i;
break;
}
}
if(index == -1) {reverse(nums.begin(),nums.end());return;};
int last = index+1;
for(int i = last + 1;i<nums.size();++i){
if(!beBig(nums[index] , nums[i]))break;
last = i;
}
swap(nums[index],nums[last]);
reverse(nums.begin()+index+1,nums.end());
}
二进制枚举子集
for ( j = i; j; j = i & (j - 1))
int read() {
int s = 0,f = 1;
char ch = getchar();
while(ch < '0' or ch > '9') {
if(ch == '-') f = -1;
ch = getchar();
}
while(ch >= '0' and ch <= '9') {
s = s * 10 + ch - '0';
ch = getchar();
}
return s * f;
}
生成递增序列
iota(a.begin(),a.end(),0);
vector<int> pal;
auto init = [] {
// 严格按顺序从小到大生成所有回文数(不用字符串转换)
for (int base = 1; base <= 10000; base *= 10) {
// 生成奇数长度回文数
for (int i = base; i < base * 10; i++) {
int x = i;
for (int t = i / 10; t; t /= 10) {
x = x * 10 + t % 10;
}
pal.push_back(x);
}
// 生成偶数长度回文数
if (base <= 1000) {
for (int i = base; i < base * 10; i++) {
int x = i;
for (int t = i; t; t /= 10) {
x = x * 10 + t % 10;
}
pal.push_back(x);
}
}
}
pal.push_back(1'000'000'001); // 哨兵,防止下面代码中的 i 下标越界
return 0;
}();