Mining of Massive Datasets - ch1

It is an interesting textbook called Mining of Massive Datasets. And this book is mainly about data mining. 

Just leave my footprints and note something remarkable.


Excerpt:

  • The model of the data is simply the answer to a complex query about it.
  • A theorem of statistics, known as the Bonferroni correction gives a statistically sound way to avoid most of these bogus positive responses to a search through the data.

  • Bonferroni’s principle, that helps us avoid treating random occurrences as if they were real. Calculate the expected number of occurrences of the events you are looking for, on the assumption that data is random. If this number is significantly larger than the number of real instances you hope to find, then you must expect almost anything you find to be bogus, i.e., a statistical artifact rather than evidence of what you are looking for.
  • The formal measure of how concentrated into relatively few documents are the occurrences of a given word is called TF.IDF (Term Frequency times Inverse Document Frequency).
  • As for the hash method, the key value should be larger than the number of baskets (tricks like grouping & weighting are useful).
  • Power law is similar as Matthew Effect which is "the rich get richer" in plain. And this can be abstracted in mathematical form "log(y) = b + a*log(x)".

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值