本文转自:https://www.zhihu.com/question/352057791/answer/1154685577
计算机是不能直接做减法运算的,因为普通电脑硬件中没有减法器,不需要额外的增加硬件电路制造难度,减法器无需存在。但可以优雅的转换成减法
大家应该都知道,数据在计算机中是以二进制的形式存在的,比如 byte a = 6; byte b = -6
分为两种情况来说,一种是正数,一种是负数;对于正数6来说,原码就是0000 0110,反码和补码也是这个;而对于-6来说,原码就是1000 0110,这是为什么呢?因为最高位(最左边的)是表示符号,0表示正数,1表示负数;
不管是byte,short,int还是其他的数字,最高位都是用来表示符号的,所以-6的原码就是1000 0110,负数的反码就是符号不变,其他的取反,就是1111 1001;负数的补码就是在反码的基础上加1就行了,由于是二进制的,是逢2进1,所以补码就是:1111 1010,;
正整数的编码,很容易理解。而负整数为什么要这样编码呢?
这样设计负数编码,是为了将减法变成加法。同一套电路,同时处理加法和减法,可降低电路复杂度,提高计算效率。
什么叫将减法变成加法呢?比如减法
5 - 3
等价于
5 + (-3)
采用下式计算,就将减法变成了加法。
那为什么负整数采用(题目说的补码)这样的编码就可做到呢?
---------------
稍微了解同余的概念(有些人有其它叫法,比如环形运算,模运算等等)。也就是取余数,比如模 256 时。
257 % 256 = 1
256 % 256 = 0
在模 256,同余运算下,257 和 1 可看成是一样的。假如用 C 语言类比,就是下面赋值中,a 溢出变为 1。
int8_t a = 257; // a 溢出,a = 1
要直观理解同余,可以将数字排成一个圈。模 256 下,就是将 0、1、2、3、4 .... 255 排成一个圈。256 就是 0 的位置。那种传统闹钟⏰,就是模 12 的一个很好例子。
---------------
排成一个圈之后 ,就可以用来表示正负整数了。正整数就是往前数,负整数就是往后数。不要管溢出,每次数一格。
比如正整数往前数
- 正数 1 就是 1
- 正数 2 就是 2
- 正数 256 就是 0。(兜了一圈回到 0 了)
- 正数 257 就是 1。(兜了一圈回到 1 了)
而负整数就往后数
- 负数 -1 就是 255
- 负数 -2 就是 254
- 负数 -256 就是 0。(兜了一圈回到 0 了)
- 负数 -257 就是 255。(兜了一圈回到 255 了)
---------------
好了,在模 256(8 位长度)下,-1 就是 255。我们用 255 的编码来表示 -1。这个 255 的编码就是负数 -1 的编码。
我不知道 -1 的编码是什么,但我知道 255 的编码是什么。于是我知道
int8_t a = -1; // 这个 a 在计算机的编码跟 255 相同,为 0xFF。
int8_t b = -2; // 这个 b 在计算机的编码跟 254 相同,为 0xFE。
---------------
现在我们知道负数的编码了,又怎么将减法变成加法呢?还是在模 256(8 位长度)下举例。减法
5 - 3 ≡ 5 + (-3) ≡ 5 + 253 ≡ 258 ≡ 2 (mod 256)
这里的关键在于在模 256(8 位长度)下,-3 的编码跟 253 是相同的。而 258 溢出,将多余位忽略掉,就相当于余 256 了。
所以 5 - 3 = 2
。
---------------
到这里,有些人可能还是会问。为什么负数往后数,减法变加法,再取余之后,就刚刚好是正确的结果呢?我知道这样做结果是对的,但为什么结果就刚刚好是对的呢?
定义一个集合,再定义一种计算,集合和运算满足一些条件,计算后的结果在这个集合内部。这样往往可以让计算过程简化,结果就是会神奇地刚刚好。
具体到这个例子,在模 256 下编码正负整数,编码后的数字会在 0 - 255 之间(一个集合),无论怎么算加减法(减法变成了加法,其实只有一种运算),计算结果永远在 0 - 255 之间,是在集合内部的。
但为什么这样做之后就可以简化计算过程,结果刚刚好。我就不知道了,应该有更深层的原因。估计要更深入理解,要看一下群论,研究一点数学构造。
---------------
上面为了方便理解,描述时用了 10 进制。电路设计中,使用的是二进制。负整数等价于往后数的正整数,可以用位运算来实现。而取余,将多余的进位忽略掉就行了。
比如题目中负数的位运算(那个补码),可以这样算,取反 + 1。
-x = ~x + 1
要注意,~x + 1
只是实现手段,并非是真正目的。我们的目的是要将数字排成一个圈,负数就往后数。换句话说,我们其实是要计算 2^n-x
。n 为整数位数,8 位时,2^n 就是 256 了。
但我们不能直接去算 2^n-x
。还记得最开始的描述吧,我们是要将减法变成加法,当然就不能出现减法。
在二进制下,当忽略多余进位的情况下,2^n-x
的结果跟 ~x + 1
相同(可以证明的)。而 ~x + 1
只有位运算和加法,完全没有减法。很多书中就将~x + 1
定义为补码,但也不告诉为什么要这样定义,有点将手段当成目的了。
举个 ~x + 1 的计算例子。
-2 = ~2 + 1 = ~(0000 0010) + 1 = (1111 1101) + 1 = 1111 1110
1111 1110
就是十进制中的 254。
其实我总不记得负数的编码是取反 + 1(刚刚又查了一下)。但我会永远记住,将数字排成一个圈,负数就是往后数。
上文是以模 256(8 位长度)举例,更高的 16 位,32 位,64 位整数长度,道理是一样的。
-x的补码就是2^n-x,将补码理解成 2^n-x,当然是可以。这种理解,相当于我前面说的,将数字排成一个圈,负数就往后数。
当忽略多余进位的情况下,2^n-x 的结果跟 ~x + 1 相同。而 ~x + 1 就是电路的实现方式,这种实现只有位运算和加法,完全没有减法。
补码是如何把253编码区分成-3或者正253的呢?
这个应该是二进制码最初会根据一个寄存器中的数据(sflag寄存器)确定这个数字是不是有符号数,有符号数第一位是1就是负值,然后取反计算具体数据;是0就是正值;无符号数都是正值。例如:在 8 位下,编码 253 到底是 -3 还是 253,本身是不可区分的。要看你如何看待这个编码本身。编码是一样的,看你如何给它赋予意义。
你将编码 253 当成无符号数字看待,它就是正数的 253。你将它当成有符号数,它就是 -3。
再看一个简单的-1-127=(-1)
(-1)+(-127)= [1000 0001]原+[1111 1111]原 = [1111 1111]补+[1000 0001]补 = [1000 0000]补=[0000 0000]原,两个对比一下,如果都使用原码的话同一个原码[0000 0000]原可以表示两个数0和-128,而用补码的话却可以一个补码对应单独的一个数,很明显,一个补码对应一个数更符合我们的需求!!!
这些都是基本的东西,只要记住在计算机中运算的话,都是以补码的形式,而且这里就会涉及到一个过程,画一个简单的图,计算机中运算都是用补码来进行的;而中间的转化过程计算机可以十分迅速的转化,这个就不用我们操心;下面我们就看看那个运算到底包括哪些运算。
2.基本的运算
说起现实中的运算,无非就是四则运算,加减乘除,而对应于计算机中也有加减乘除,加减已经在上面说了,可以用补码的加法来实现加减,但是乘除呢?在这里我们就说说最简单的乘除法啊,乘以2和除以2这种,如果是乘除其他数还是比较复杂的,暂时我也没有什么兴趣研究,有兴趣的小伙伴可以查查计算机中乘除法的实现,你会沉迷其中不可自拔!
以byte类型来举例,byte类型最高位是符号位,所以范围是在1111 1111到01111 1111之间,变成十进制也就是-127到127,加上0000 0000这个原码对应两个数0和-128,所以整个的范围就是-128到127;
乘除也是分为两大块,正数和负数;
2.1 正数乘2运算(左移用<<表示)
我们看看一个简单的数(这里我正数也写一下补码):byte a = 5; 5的原码为:[0000 0101]原=[0000 0101]补 ;乘以2就等于10,原码为[0000 1010]原=[0000 1010]补
看看这两个补码有什么关系?就是将5的补码最右边添加一个0,最左边去掉一个0!最好是将5的补码看作一个整体,这个整体向左移动一位,左边超过的位数直接去掉,右边空的位置添0
这个时候会有一个问题,假如二进制补码是0100 0000,也就是64,向左移动一位,你觉得是多少?答案是-128,按理来说应该是正数的128啊,为什么是负的呢?记住,这个移位操作是会覆盖符号位的,往左移动一位的补码是1000 0000,注意,这里千万不要变成原码,在第一节中说过了补码为1000 0000的就是-128(这两个补码一定要注意点,很特殊,0000 0000代表十进制的0,1000 0000代表十进制的-128!千万不要变成原码比较,因为他们的原码都是0000 0000无法区分)
public void num() { byte a = 64; byte b = (byte) (a<<1); System.out.println(b);//-128 }
public void num() {
byte a = 64;
byte b = (byte) (a<<1);
System.out.println(b);//-128
}
2.2 正数除2运算(右移用>>表示)
既然往左移动一位是乘以2,那么往右移动一位肯定是除以2了!但是记住一个规律,往右移动的话,右边超出来的部分去掉,左边空出来的位置添加和符号位相同的数!(记住了规律这个负数的右移一样的)
举个例子,65的补码0100 0001,向右移动一位,补码应该是0010 0000,记住,此时最左边的0是根据符号位是0才添加的0,是正数,右移后的原码和补码一样,那么变成十进制应该是32,这里可以看出一个大于0的奇数右移一位的结果就是除以2然后向下取整,偶数的话直接就是除以2了
2.3 负数乘2运算(<<)
正数其实比较容易,但是负数的话就稍微麻烦一点!例如-127的补码是1000 0001,左移一位的补码0000 0010,由于这个补码是正的,所以原码也是这个,变成十进制就是2,有没有觉得特别有意思,哈哈哈!知道为什么吗?因为byte的范围是-128到127啊,只要是超过了这个范围的就会变成你想不到的数!
再举个没有超过范围的例子,-6的补码是1111 1010,左移一位的补码就是1111 0100,由于是负的,变成原码为1000 1100,也就是对应十进制的-12,这个结果和想象的一样!
2.4 负数除2运算(>>)
记住在2.2中说的一句话,向右移动的话,最右边超过的部分直接去掉,左边空出来的位置填上和符号位相同的数!说起来很抽象,举个栗子:-6的补码是1111 1010,往右移动一个位置的补码就是1111 1101,是负的,变成原码就知道对应的十进制是多少了(1000 0011 = -3)。
2.5.无符号右移(>>>)
本来都说了正负数的左移和右移应该就说完了,但是呢,还有一个比较特殊的运算方式,就是无符号右移(注意只有无符号右移,没有无符号左移啊!),简单的来说就是不管正数负数,只要是右移的话,最右边超过的部分直接丢掉,左边空出来的位置都添0就ok了!
好像也没什么可说的,简单举个栗子吧!-6的补码是1111 1010,无符号右移一位的补码就是0111 1101,正的,原码和补码一样,所以对应的十进制是应该是125,然而实际情况有点问题,代码如下:
@org.junit.Test
public void num() {
byte a = -6;
byte b = (byte) (a>>>1);
System.out.println(b);//-3
}
打印的结果为什么是-3呢?,这里就有一个小小的细节操作,在进行右移操作的时候,首先会将该byte类型的数变成int类型的,对int类型的变原码,然后变补码,移位操作之后,取后8位变为byte类型,然后变原码,最后转十进制。。。。是不是贼麻烦!还是以上面的-6为栗子,-6要进行无符号右移,所以-6的原码应该是32位的
10000000 00000000 00000000 00000110 //原码
11111111 11111111 11111111 11111010//补码
011111111 11111111 11111111 1111101//无符号右移一位
11111101//取后八位,就是byte类型的补码
10000011//byte类型原码,对应十进制是-3
3.简单总结一下
由于我们是用一个byte类型的为例,这也是为了方便举例子,不然用个int类型的,随便一个数写出原码都是一大串,看着都眼花。。。其实byte类型的移位运算弄清楚了,其他的类型一样的,看了这么多,不知道大家有没有总结出来一点规律,我就说说我的理解吧!
首先,我们要明确当前的数是一个什么类型,进行移位操作之后会不会超出这个类型的范围,如果超出了,我们是不能直接得出乘以2或者除以2这种简单的结论的,会得出一个意想不到的数字;
然后,如果移位操作之后没有超过当前类型的范围,那么就大胆的说左移一位是乘以2,右移一位是除以2向下取整吧!!!
再然后,对于一个正数,左移一位就是最高位去掉,最低位添0;右移一位最高位添加和符号位一样的数,最低位去掉;对于负数而言,也是一样的,就不多说了
最后,就是无符号右移,这里要注意先要变成int类型的二进制原码,变补码,然后进行移位操作,截取后8位为我们需要的byte类型的补码,再变原码,最后就是变成十进制的了。。。
4."或"、"与"、"非"、"异或"
请注意“或”、“与”、“非”和java中的||、&&、!别弄混淆了,java中的这几个是用来进行逻辑判断的,而我们这里的“或”“与”“异或”这几个是用来计算二进制的,完全没有什么相关,虽然写法有点类似,“或”用一根竖线表示|,与用一个&表示,非用~表示,"异或"用^表示,下面就简单说说他们的作用:
或:在二进制中,两个操作数进行或操作,只要有一个为1,结果就为1,否则就为0;举个例子,-6|3,首先将各自都变为补码,也就是变为(1111 1011)|(0000 0011),根据下图,最后计算的补码为1111 1011,变为原码为1000 0101,对应十进制的-5,所以-6|3的结果就是-5!很简单吧,现在应该知道操作数是什么了吧!
与:两个操作数同时为1,结果才是1,否则为0;
异或:看这个名字就知道了,两个操作数不同结果就是1,否则为0;
非:就是对自己取反(符号位也要取反),用法如下,因为-6的补码是1111 1010,取反之后的补码0000 0101,对应十进制的5
public void num() {
byte a = -6;
System.out.println(~a);//5
}
5.简单练习
如果把上面的都看懂了,理解了那么下面这个就很容易了;
直接说一下这个方法的用处,就是你随便输入一个int类型的数,它都会给你返回一个2的次幂数,比如1,2,4,8,16.32.64等这种数(1等于2的零次幂,也是2的次幂数)
static final int tableSizeFor(int cap) {
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 :n + 1;
}
这个方法其实很容易,就是将传进去的int类型的cap首先减一,赋值给n,然后n进行5次无符号右移操作,每次右移之后都和n进行"或"操作,最后判断n如果小于零,就返回1,否则就返回n+1
我们就比如传入5,那么n等于4,无符号右移一位然后与n进行“或”操作,由于位数太多,我就直接写结果了:
00000000 00000000 00000000 00000100//n的二进制补码
00000000 00000000 00000000 00000110//无符号右移一位然后和n进行“或”操作
00000000 00000000 00000000 00000111//无符号右移两位然后和n进行“或”操作
00000000 00000000 00000000 00000111//无符号右移四位然后和n进行“或”操作
00000000 00000000 00000000 00000111//无符号右移八位然后和n进行“或”操作
00000000 00000000 00000000 00000111//无符号右移十六位然后和n进行“或”操作
最后右移16位的n结果应该是7,再到return语句,返回的是n+1,也就是返回8,而8就是2^3,满足前面说的返回一个2的次幂数;有兴趣的可以试试其他的数,返回的结果肯定是2的次幂数,有没有觉得这个算法特别牛逼!简直无敌呀!
如果你看懂了这个方法的话,你可以打开你的Eclipse或者IDEA,用jdk1.8找到一个叫做HashMap的类,你就可以看到这个方法(当然我把最后的return语句稍微变了一点),这个就是HashMap进行扩容的一个方法,所以我们可以知道HashMap初始化以及扩容之后的容量,总是2的幂级数,是不是很容易啊!
当然有的时候面试,面试官会问你为什么HashMap的容量要设置为2的幂级数啊?这个问题就有点东西了,首先你可以把这部分算法给他说一下,玛德!源码就是这样写的啊!你还问我为什么?然后还要说的话,其实也很容易,还涉及到了一个“与”操作,看看这个(n - 1) & hash,hash就是将一个键值对的key通过hash算法得到的一个很大的数,而n就是hashmap长度,也就是2的次幂数,那么(n - 1) & hash代表什么呢?
有兴趣的可以玩一下,其实就是相当于hash%n,就是相当于对n取余,这个余数肯定是小于n,这样首先可以保证得到的数组中的索引不会超过数组,而且用这种方式可以保证数据是均匀的分布在hashmap中的那个数组中,我这里也就是简单提了一下,很容易的!