如何理解马尔可夫决策过程?

本文介绍了马尔可夫决策过程(MDP)的基本概念,包括马尔可夫性、状态转移概率和回报函数,并通过下棋的例子进行了生动解释。MDP由状态集、动作集、状态转移概率和回报函数构成,用于描述智能体在环境中如何选择行动以最大化长期回报。值函数是衡量策略优劣的关键,分为有限步和无限步折扣回报两种形式。此外,文章还提到了MDP在2048游戏建模中的挑战,包括状态转移概率的统计和奖励函数的设计。
摘要由CSDN通过智能技术生成

1 引言

马尔可夫性:无后效性,指系统的下个状态只与当前状态信息有关,而与更早之前的状态无关;
马尔可夫链(Markov Chain, MC):系统的下一个状态只与当前状态相关;
马尔可夫决策过程(Markov Decision Process, MDP):具有马尔可夫性,与MC不同的是MDP还考虑了动作,即系统下个状态不仅和当前的状态有关,也和当前采取的动作有关。
以下棋为例:我们在某个局面(状态 s i s_i si)走了一步(动作 a i a_i ai),这时对手的选择(导致下个状态 s i + 1 s_{i+1} si+1)我们是不能确定的,但是他的选择只和 s i s_i si a i a_i ai有关,而不用考虑更早之前的状态和动作。

2 马尔可夫决策过程

一个马尔可夫决策过程可以由一个四元组表示:
M = ( S , A , P s a , R ) (1) M = (S, A, P_{sa}, R) \tag1 M=(S,A,Psa,R)(1)

  • S = { s 1 , s 2 , … , s k } S = \{s_1, s_2, \dots, s_k\} S={s1,s2,,sk}:状态集(states), s i s_i si表示第 i i i步的状态;
  • A = { a 1 , a 2 , … , a k } A = \{a_1, a_2, \dots, a_k\} A={a1,a2,,ak}:一组动作(actions), a i a_i ai表示第 i i i步的动作;
  • P s a P_{sa} Psa:状态转移概率,当前 s i ∈ S s_i \in S siS状态下,经过 a i ∈ A a_i \in A aiA作用后,会转移到的其它状态的概率分布情况,例如比如,在状态 s i ∈ S s_i \in S siS下执行动作 a i ∈ A a_i \in A aiA,转移到 s i + 1 ∈ S s_{i+1} \in S si+1S的概率可以表示为 p ( s i + 1 ∣ s i , a i ) p(s_{i+1} \vert s_i, a_i) p(si+1si,ai);
  • R : S × A ↦ R R: S \times A \mapsto \mathbb{R} R:S×AR:回报函数(reward function),如果回报只与状态有关,可以简化为 R : S ↦ R R: S \mapsto \mathbb{R} R:SR。如果一组 ( s i , a i ) (s_{i},a_i) (si,ai)转移到了下个状态 s i + 1 s_{i+1} si+1,那么回报函数可记为 r ( s i + 1 ∣ s i , a i ) r(s_{i+1}|s_i, a_i) r(si+1si,ai)。如果 ( s i , a i ) (s_i,a_i) (si,ai)对应的下个状态 s i + 1 s_{i+1} si+1是唯一的,那么回报函数也可以记为 r ( s i , a i ) r(s_i,a_i) r(si,ai)

MDP 的动态过程如下:

  • 智能体(agent)的初始状态为 s 0 s_0 s0;
  • A A A 中挑选一个动作 a 0 a_0 a0执行,执行后,agent 按 P s a P_{sa} Psa概率随机转移到了下一个 s 1 s_1 s1状态, s 1 ∈ P s 0 a 0 s_1 \in P_{s_0a_0} s1Ps0a0
  • 然后再执行一个动作 a 1 a_1 a1,就转移到了 s 2 s_2 s2,接下来再执行 a 2 a_2 a2,…;
  • 可以用下面的图表示状态转移的过程:

在这里插入图片描述
如果回报 r i r_i ri是根据状态 s i s_i si和动作 a i a_i ai得到的,则MDP可以如图表示:
在这里插入图片描述

3 值函数(value function)

增强学习学到的是一个从环境状态到动作的映射(即行为策略),记为策略 π : S → A π: S→A π:SA。而增强学习往往又具有延迟回报的特点: 如果在第 n n n步输掉了棋,那么只有状态 s n s_n sn和动作 a n a_n an获得了立即回报 r ( s n , a n ) = − 1 r(s_n,a_n)=-1 r(sn,an)=1,前面的所有状态立即回报均为0。所以对于之前的任意状态 s s s和动作 a a a,立即回报函数 r ( s , a ) r(s,a) r(s,a)无法说明策略的好坏。因而需要定义值函数(value function,又叫效用函数)来表明当前状态下策略 π π π的长期影响。

  • V π ( s ) V^π(s) Vπ(s):策略 π π π下,状态 s s s的值函数;
  • r i r_i ri:未来第 i i i步的立即回报。

常见的值函数有以下三种:
V π ( s ) = E π [ ∑ i = 0 h r i ∣ s 0 = s ] (2) V^π(s) = E_{\pi}\left[\sum_{i=0}^{h} r_i \vert s_0 = s \right] \tag2 Vπ(s)=Eπ[i=0hris0=s](2)

V π ( s ) = lim ⁡ h → ∞ E π [ 1 h ∑ i = 0 h r i ∣ s 0 = s ] (3) V^π(s) = \lim_{h \rightarrow \infty}E_{\pi}\left[\frac{1}{h}\sum_{i=0}^{h} r_i \vert s_0 = s \right] \tag3 Vπ(s)=hlimEπ[h1i=0hris0=s](3)

V π ( s ) = E π [ ∑ i = 0 ∞ γ i r i ∣ s 0 = s ] (4) V^π(s) = E_{\pi}\left[\sum_{i=0}^{\infty} \gamma^{i} r_i \vert s_0 = s \right] \tag4 Vπ(s)=Eπ[i=0γiris0=s](4)
其中:
a) 是采用策略π的情况下未来有限h步的期望立即回报总和;
b) 是采用策略π的情况下期望的平均回报;
c) 是值函数最常见的形式,式中 γ ∈ [ 0 , 1 ] γ∈[0,1] γ[0,1]称为折合因子,表明了未来的回报相对于当前回报的重要程度。特别的, γ = 0 γ=0 γ=0时,相当于只考虑立即不考虑长期回报, γ = 1 γ=1 γ=1时,将长期回报和立即回报看得同等重要。

4 策略

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5 对2048游戏的建模

s 1 s_1 s1: 初始化状态,随机产生的棋盘;
a 1 a_1 a1:用户连接相同的数字后,系统为棋盘分配新数字的动作;
s 2 s_2 s2:用户选择如何连线后导致的下一个棋盘,该棋盘依然有空缺,需要填充新数字;
p ( s 2 ∣ s 1 , a 1 ) p(s_{2} \vert s_1, a_1) p(s2s1,a1):经过 a 1 a_1 a1操作后状态从 s 1 s_1 s1 s 2 s_2 s2的概率,这个我觉得可以通过统计得到;
奖励函数:是设计的难点
如何进行训练:也是一个难点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

HenrySmale

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值