高中数学题型整理(高一年级)

1 曲线过一个定点

【题1】已知函数 g ( x ) = ( a + 1 ) x − 2 + 1 ( a > 0 ) g(x) = (a+1)^{x-2} + 1 (a > 0) g(x)=(a+1)x2+1(a>0)的图像过定点A,且点A又在函数 f ( x ) = log ⁡ 3 ( x + a ) f(x) = \log_{\sqrt{3}}{(x + a)} f(x)=log3 (x+a),求不等式 g ( x ) > 3 g(x) > 3 g(x)>3的解集。
【分析及解答】:
(1)这个题最关键的是在于一个“恒”字,也就是说,无论 a > 0 a > 0 a>0如何变化,都要经过的点。
利用指数运算的规则,可以知道,只有满足如下条件:
x − 2 = 0 x - 2 = 0 x2=0
才能保证无论 a a a如何变化, g ( x ) g(x) g(x)为一个固定值,所以利用这个条件,可以求得A点为 ( 2 , 2 ) (2,2) (2,2)
(2)利用第二个条件,将A点代入 f ( x ) f(x) f(x)得到:
f ( 2 ) = log ⁡ 3 ( 2 + a ) = 2 f(2) = \log_{\sqrt{3}}{(2 + a)} = 2 f(2)=log3 (2+a)=2
可以得到 a = 1 a = 1 a=1
(3)将 a = 1 a = 1 a=1代入 g ( x ) g(x) g(x),再利用第三个条件,得到
( 2 ) x − 2 + 1 > 3 (2)^{x-2} + 1 > 3 (2)x2+1>3
可以求解得到 x > 3 x > 3 x>3

考点分析:一是如何理解“恒过”,二是指数运算规则。

2 求取值范围

【题1】设函数 y = m x 2 − m x − 1 y = mx^2 - mx -1 y=mx2mx1
(1) 若对任意 x ∈ R x \in \mathbb{R} xR,使得 y < 0 y < 0 y<0成立,求实数 m m m的取值范围;
(2) 若对于任意 x ∈ [ 1 , 3 ] x \in [1, 3] x[1,3] y < − m + 5 y < -m +5 y<m+5恒成立,求实数 m m m的取值范围。
【分析及解答】:
(1) m m m的值决定了是否是二次曲线。
分情况讨论:
第一种情况: m = 0 m = 0 m=0,则函数不是二次曲线,代入得到 y = − 1 < 0 y = -1 < 0 y=1<0成立;
第二种情况: m ≠ 0 m \neq 0 m=0,则函数是二次曲线,现在就要判断函数是否有最大值。
如果 m > 0 m > 0 m>0,函数是一个凹曲线,有最小值,没有最大值,不满足条件;
如果 m < 0 m < 0 m<0,函数是一个凸曲线,有最大值,满足条件,现在就看函数 m x 2 − m x − 1 = 0 mx^2 - mx -1 = 0 mx2mx1=0是否交于 x x x轴,如果不交于 x x x轴,即函数最大值在 y = 0 y = 0 y=0的下面,有如下结论:

{ m < 0 Δ = b 2 − 4 a c = m 2 − 4 m ( − 1 ) = m 2 + 4 m < 0 ( 此时 m x 2 − m x − 1 = 0 无实数解 ) \left\{\begin{array}{l} m<0 \\ \Delta=b^2 - 4ac = m^{2} - 4 m(-1) = m^2 + 4m <0 (此时mx^2 - mx -1 = 0无实数解) \end{array}\right. {m<0Δ=b24ac=m24m(1)=m2+4m<0(此时mx2mx1=0无实数解)
得到
{ m < 0 m > − 4 \left\{\begin{array}{l} m<0 \\ m > -4 \end{array}\right. {m<0m>4
综上得: m ∈ ( − 4 , 0 ] m \in (-4, 0] m(4,0]
(2)根据 y < − m + 5 y < -m +5 y<m+5代入整理后得到
m x 2 − m x + m − 6 < 0 mx^2 - mx +m - 6< 0 mx2mx+m6<0
即:
m ( x 2 − x + 1 ) < 6 m(x^2 - x + 1) < 6 m(x2x+1)<6
因为
g ( x ) = ( x 2 − x + 1 ) = ( x − 1 2 ) 2 + 3 4 > 0 g(x) = (x^2 - x + 1) = (x - \frac{1}{2})^2 + \frac{3}{4} > 0 g(x)=(x2x+1)=(x21)2+43>0
g ( x ) g(x) g(x) x ∈ [ 1 , 3 ] x \in [1, 3] x[1,3]是单调递增函数,即 min ⁡ g ( x ) = g ( 1 ) = 1 , max ⁡ g ( x ) = g ( 3 ) = 7 \min g(x) = g(1) = 1, \max g(x) = g(3) = 7 ming(x)=g(1)=1,maxg(x)=g(3)=7
根据 m ( x 2 − x + 1 ) < 6 m(x^2 - x + 1) < 6 m(x2x+1)<6可以得到:
m < 6 x 2 − x + 1 ≤ 6 7 m < \frac{6}{x^2 - x + 1} \leq \frac{6}{7} m<x2x+1676
也就是说, m m m的取值范围为: { m ∣ m < 6 7 } \{m | m < \frac{6}{7}\} {mm<76}

考点分析:二次函数的性质,什么时候是凹曲线,什么时候是凸曲线,什么时候和 x x x轴有交点。

3 求解析式

【题1】已知 f ( x ) f(x) f(x)是定义在 R \mathbb{R} R的奇函数,且当 x > 0 x > 0 x>0时, f ( x ) = 1 − 3 x f(x) = 1 - 3^x f(x)=13x
(1)求函数 f ( x ) f(x) f(x)的解析式;
(2)当 x ∈ [ 2 , 8 ] x \in [2, 8] x[2,8]时,方程 f ( log ⁡ 2 2 x ) + f ( 4 − a log ⁡ 2 x ) > 0 f(\log_2^2x) + f(4 - a\log_2x) > 0 f(log22x)+f(4alog2x)>0有解,求实数 a a a的取值范围。
【分析及解答】
(1)求函数的解析式,就是求自变量 x x x在其取值范围内对应的方程
根据两个已知条件:
f ( x ) f(x) f(x)是定义在 R \mathbb{R} R的奇函数
x > 0 x > 0 x>0时, f ( x ) = 1 − 3 x f(x) = 1 - 3^x f(x)=13x
可知
x < 0 x < 0 x<0时, f ( − x ) = − f ( x ) = 3 x − 1 f(-x) = - f(x) = 3^x - 1 f(x)=f(x)=3x1
x = 0 x = 0 x=0时,也可以得到 f ( x ) = 1 − 3 x = 0 f(x) = 1 - 3^x = 0 f(x)=13x=0或者 f ( x ) = 3 x − 1 = 0 f(x) = 3^x - 1 = 0 f(x)=3x1=0
因此最终的解析式为:
f ( x ) = { 1 − 3 x x ≥ 0 3 x − 1 x < 0 f(x) = \left\{\begin{array}{l} 1 - 3^x & x \geq 0 \\ 3^x - 1 & x < 0 \end{array}\right. f(x)={13x3x1x0x<0
(2)
先分析第一项。
x ∈ [ 2 , 8 ] x \in [2, 8] x[2,8]时, log ⁡ 2 2 x > 0 \log_2^2x > 0 log22x>0,并且 log ⁡ 2 x \log_2x log2x x ∈ [ 2 , 8 ] x \in [2, 8] x[2,8]是单调递增函数, min ⁡ log ⁡ 2 2 x = log ⁡ 2 2 2 = 1 , max ⁡ log ⁡ 2 2 x = log ⁡ 2 2 8 = 9 \min \log_2^2x = \log_2^22 = 1, \max \log_2^2x = \log_2^28 = 9 minlog22x=log222=1,maxlog22x=log228=9
f ( log ⁡ 2 2 x ) = 1 − 3 log ⁡ 2 2 x f(\log_2^2x) = 1 - 3^{\log_2^2x} f(log22x)=13log22x是单调递减函数,则
min ⁡ f ( log ⁡ 2 2 x ) = f ( 9 ) = 1 − 3 9 < 0 , max ⁡ f ( log ⁡ 2 2 x ) = f ( 1 ) = 1 − 3 1 < 0 \begin{array}{l} \min f(\log_2^2x) = f(9) = 1 - 3^9 < 0, \\ \max f(\log_2^2x) = f(1) = 1 - 3^1 < 0 \end{array} minf(log22x)=f(9)=139<0,maxf(log22x)=f(1)=131<0
再分析第二项 f ( 4 − a log ⁡ 2 x ) f(4 - a\log_2x) f(4alog2x)
假设 4 − a log ⁡ 2 x ≥ 0 4 - a\log_2x \geq 0 4alog2x0,则 f ( 4 − a log ⁡ 2 x ) = 1 − 3 4 − a log ⁡ 2 x f(4 - a\log_2x) = 1 - 3^{4 - a\log_2x} f(4alog2x)=134alog2x是一个单调递减函数,最大值为 f ( 0 ) = 0 f(0) = 0 f(0)=0,结合第一式可知,不满足条件。
也就是说只有 4 − a log ⁡ 2 x < 0 4 - a\log_2x < 0 4alog2x<0才能满足条件,可以得到 x a > 2 4 x^a > 2^4 xa>24,因为 x ∈ [ 2 , 8 ] x \in [2, 8] x[2,8] x a x^a xa是单调递增函数,即:
min ⁡ x a = 2 a , max ⁡ x a = 8 a \begin{array}{l} \min x^a = 2^a, \\ \max x^a = 8^a \end{array} minxa=2a,maxxa=8a
2 a > 2 4 2^a > 2^4 2a>24,根据指数函数的单调性可知, a > 4 a > 4 a>4
根据第一式最大值为 − 2 -2 2,我们可以得到:
f ( 4 − a log ⁡ 2 x ) = 1 − 3 4 − a log ⁡ 2 x > 2 f(4 - a\log_2x) = 1 - 3^{4 - a\log_2x} > 2 f(4alog2x)=134alog2x>2

3 4 − a log ⁡ 2 x < 1 3^{4 - a\log_2x} < 1 34alog2x<1
4 − a log ⁡ 2 x < 0 4 - a\log_2x < 0 4alog2x<0满足条件,验证通过。
综上述: a > 4 a > 4 a>4
考点分析:第一就是分析能力,第二就是对数函数和指数函数的性质要特别熟悉。

【题2】已知幂函数 f ( x ) = ( 2 m 2 + m ) x m f(x) = (2m^2 + m)x^m f(x)=(2m2+m)xm ( 0 , + ∞ ) (0, +\infty) (0,+)上单调递增,函数 g ( x ) g(x) g(x)满足 g ( 2 x − 1 ) = − 4 x 2 − 4 x + 1 g(2x-1) = -4x^2 - 4x + 1 g(2x1)=4x24x+1
(1)求 f ( x ) , g ( x ) f(x), g(x) f(x),g(x)的解析式;
(2)已知实数 a , b a, b a,b,满足 f ( a − 1 ) + 1 f ( a − 1 ) = g ( b ) f(a-1) + \frac{1}{f(a-1)} = g(b) f(a1)+f(a1)1=g(b),求 a b a^b ab的值。
【分析及解答】
(1)
先求 f ( x ) f(x) f(x)的解析式。
指数函数的性质如下:
在这里插入图片描述
在这里插入图片描述
根据幂函数的定义得到:
幂函数的一般形式是 y = x a y = x^a y=xa ,其中, a a a可为任何常数,但中学阶段仅研究 a a a为有理数的情形。
可得: 2 m 2 + m = 1 ⇒ ( 2 m − 1 ) ( m + 1 ) = 0 ⇒ m = 1 2 或 m = − 1 2m^2 + m = 1 \Rightarrow (2m -1)(m+1) = 0 \Rightarrow m = \frac{1}{2}或m = -1 2m2+m=1(2m1)(m+1)=0m=21m=1

根据指数函数的性质及单增函数的条件,必须舍弃 m = − 1 m = -1 m=1,可以得到:
f ( x ) = x 1 2 f(x) = x^{\frac{1}{2}} f(x)=x21
再求 g ( x ) g(x) g(x)的解析式。
g ( 2 x − 1 ) = − 4 x 2 − 4 x + 1 = − ( 2 x − 1 ) 2 − 8 x + 2 = − ( 2 x − 1 ) 2 − 4 ( 2 x − 1 ) − 2 g(2x-1) = -4x^2 - 4x + 1 = -(2x -1)^2 - 8x + 2 = -(2x -1)^2 - 4(2x -1) -2 g(2x1)=4x24x+1=(2x1)28x+2=(2x1)24(2x1)2.
所以: g ( x ) = − x 2 − 4 x − 2 g(x) = -x^2 - 4x - 2 g(x)=x24x2.
(2) f ( a − 1 ) + 1 f ( a − 1 ) = g ( b ) f(a-1) + \frac{1}{f(a-1)} = g(b) f(a1)+f(a1)1=g(b)代入得:
( a − 1 ) 1 2 + 1 ( a − 1 ) 1 2 = − b 2 − 4 b − 2 ⇒ a > 1 , ( a − 1 ) 1 2 + 1 ( a − 1 ) 1 2 = − ( b + 2 ) 2 + 2 \begin{array}{l} (a-1)^{\frac{1}{2}} + \frac{1}{(a-1)^{\frac{1}{2}}} = -b^2 - 4b - 2 \\ \Rightarrow \\ a > 1, (a-1)^{\frac{1}{2}} + \frac{1}{(a-1)^{\frac{1}{2}}} = -(b+2)^2 + 2\\ \end{array} (a1)21+(a1)211=b24b2a>1,(a1)21+(a1)211=(b+2)2+2
根据
a > 1 时 , f ( a − 1 ) + 1 f ( a − 1 ) ≥ 2 f ( a − 1 ) 1 f ( a − 1 ) = 2 a>1时, f(a-1) + \frac{1}{f(a-1)} \geq 2\sqrt{f(a-1) \frac{1}{f(a-1)}} = 2 a>1,f(a1)+f(a1)12f(a1)f(a1)1 =2
可以求得 a = 2 , b = − 2 a = 2, b = -2 a=2,b=2,所以 a b = 2 − 2 = 1 4 a^b = 2^{-2} = \frac{1}{4} ab=22=41.
考点分析:
(1)幂函数的定义;
(2)指数函数的性质;
(3) a 2 + b 2 ≥ 2 a b a^2 + b^2 \geq 2ab a2+b22ab

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

HenrySmale

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值