1 曲线过一个定点
【题1】已知函数
g
(
x
)
=
(
a
+
1
)
x
−
2
+
1
(
a
>
0
)
g(x) = (a+1)^{x-2} + 1 (a > 0)
g(x)=(a+1)x−2+1(a>0)的图像恒过定点A,且点A又在函数
f
(
x
)
=
log
3
(
x
+
a
)
f(x) = \log_{\sqrt{3}}{(x + a)}
f(x)=log3(x+a),求不等式
g
(
x
)
>
3
g(x) > 3
g(x)>3的解集。
【分析及解答】:
(1)这个题最关键的是在于一个“恒”字,也就是说,无论
a
>
0
a > 0
a>0如何变化,都要经过的点。
利用指数运算的规则,可以知道,只有满足如下条件:
x
−
2
=
0
x - 2 = 0
x−2=0
才能保证无论
a
a
a如何变化,
g
(
x
)
g(x)
g(x)为一个固定值,所以利用这个条件,可以求得A点为
(
2
,
2
)
(2,2)
(2,2)。
(2)利用第二个条件,将A点代入
f
(
x
)
f(x)
f(x)得到:
f
(
2
)
=
log
3
(
2
+
a
)
=
2
f(2) = \log_{\sqrt{3}}{(2 + a)} = 2
f(2)=log3(2+a)=2
可以得到
a
=
1
a = 1
a=1。
(3)将
a
=
1
a = 1
a=1代入
g
(
x
)
g(x)
g(x),再利用第三个条件,得到
(
2
)
x
−
2
+
1
>
3
(2)^{x-2} + 1 > 3
(2)x−2+1>3
可以求解得到
x
>
3
x > 3
x>3。
考点分析:一是如何理解“恒过”,二是指数运算规则。
2 求取值范围
【题1】设函数
y
=
m
x
2
−
m
x
−
1
y = mx^2 - mx -1
y=mx2−mx−1
(1) 若对任意
x
∈
R
x \in \mathbb{R}
x∈R,使得
y
<
0
y < 0
y<0成立,求实数
m
m
m的取值范围;
(2) 若对于任意
x
∈
[
1
,
3
]
x \in [1, 3]
x∈[1,3],
y
<
−
m
+
5
y < -m +5
y<−m+5恒成立,求实数
m
m
m的取值范围。
【分析及解答】:
(1)
m
m
m的值决定了是否是二次曲线。
分情况讨论:
第一种情况:
m
=
0
m = 0
m=0,则函数不是二次曲线,代入得到
y
=
−
1
<
0
y = -1 < 0
y=−1<0成立;
第二种情况:
m
≠
0
m \neq 0
m=0,则函数是二次曲线,现在就要判断函数是否有最大值。
如果
m
>
0
m > 0
m>0,函数是一个凹曲线,有最小值,没有最大值,不满足条件;
如果
m
<
0
m < 0
m<0,函数是一个凸曲线,有最大值,满足条件,现在就看函数
m
x
2
−
m
x
−
1
=
0
mx^2 - mx -1 = 0
mx2−mx−1=0是否交于
x
x
x轴,如果不交于
x
x
x轴,即函数最大值在
y
=
0
y = 0
y=0的下面,有如下结论:
{
m
<
0
Δ
=
b
2
−
4
a
c
=
m
2
−
4
m
(
−
1
)
=
m
2
+
4
m
<
0
(
此时
m
x
2
−
m
x
−
1
=
0
无实数解
)
\left\{\begin{array}{l} m<0 \\ \Delta=b^2 - 4ac = m^{2} - 4 m(-1) = m^2 + 4m <0 (此时mx^2 - mx -1 = 0无实数解) \end{array}\right.
{m<0Δ=b2−4ac=m2−4m(−1)=m2+4m<0(此时mx2−mx−1=0无实数解)
得到
{
m
<
0
m
>
−
4
\left\{\begin{array}{l} m<0 \\ m > -4 \end{array}\right.
{m<0m>−4
综上得:
m
∈
(
−
4
,
0
]
m \in (-4, 0]
m∈(−4,0]。
(2)根据
y
<
−
m
+
5
y < -m +5
y<−m+5代入整理后得到
m
x
2
−
m
x
+
m
−
6
<
0
mx^2 - mx +m - 6< 0
mx2−mx+m−6<0
即:
m
(
x
2
−
x
+
1
)
<
6
m(x^2 - x + 1) < 6
m(x2−x+1)<6
因为
g
(
x
)
=
(
x
2
−
x
+
1
)
=
(
x
−
1
2
)
2
+
3
4
>
0
g(x) = (x^2 - x + 1) = (x - \frac{1}{2})^2 + \frac{3}{4} > 0
g(x)=(x2−x+1)=(x−21)2+43>0
g
(
x
)
g(x)
g(x)在
x
∈
[
1
,
3
]
x \in [1, 3]
x∈[1,3]是单调递增函数,即
min
g
(
x
)
=
g
(
1
)
=
1
,
max
g
(
x
)
=
g
(
3
)
=
7
\min g(x) = g(1) = 1, \max g(x) = g(3) = 7
ming(x)=g(1)=1,maxg(x)=g(3)=7。
根据
m
(
x
2
−
x
+
1
)
<
6
m(x^2 - x + 1) < 6
m(x2−x+1)<6可以得到:
m
<
6
x
2
−
x
+
1
≤
6
7
m < \frac{6}{x^2 - x + 1} \leq \frac{6}{7}
m<x2−x+16≤76
也就是说,
m
m
m的取值范围为:
{
m
∣
m
<
6
7
}
\{m | m < \frac{6}{7}\}
{m∣m<76}。
考点分析:二次函数的性质,什么时候是凹曲线,什么时候是凸曲线,什么时候和 x x x轴有交点。
3 求解析式
【题1】已知
f
(
x
)
f(x)
f(x)是定义在
R
\mathbb{R}
R的奇函数,且当
x
>
0
x > 0
x>0时,
f
(
x
)
=
1
−
3
x
f(x) = 1 - 3^x
f(x)=1−3x
(1)求函数
f
(
x
)
f(x)
f(x)的解析式;
(2)当
x
∈
[
2
,
8
]
x \in [2, 8]
x∈[2,8]时,方程
f
(
log
2
2
x
)
+
f
(
4
−
a
log
2
x
)
>
0
f(\log_2^2x) + f(4 - a\log_2x) > 0
f(log22x)+f(4−alog2x)>0有解,求实数
a
a
a的取值范围。
【分析及解答】
(1)求函数的解析式,就是求自变量
x
x
x在其取值范围内对应的方程
根据两个已知条件:
f
(
x
)
f(x)
f(x)是定义在
R
\mathbb{R}
R的奇函数
x
>
0
x > 0
x>0时,
f
(
x
)
=
1
−
3
x
f(x) = 1 - 3^x
f(x)=1−3x
可知
x
<
0
x < 0
x<0时,
f
(
−
x
)
=
−
f
(
x
)
=
3
x
−
1
f(-x) = - f(x) = 3^x - 1
f(−x)=−f(x)=3x−1。
x
=
0
x = 0
x=0时,也可以得到
f
(
x
)
=
1
−
3
x
=
0
f(x) = 1 - 3^x = 0
f(x)=1−3x=0或者
f
(
x
)
=
3
x
−
1
=
0
f(x) = 3^x - 1 = 0
f(x)=3x−1=0;
因此最终的解析式为:
f
(
x
)
=
{
1
−
3
x
x
≥
0
3
x
−
1
x
<
0
f(x) = \left\{\begin{array}{l} 1 - 3^x & x \geq 0 \\ 3^x - 1 & x < 0 \end{array}\right.
f(x)={1−3x3x−1x≥0x<0
(2)
先分析第一项。
当
x
∈
[
2
,
8
]
x \in [2, 8]
x∈[2,8]时,
log
2
2
x
>
0
\log_2^2x > 0
log22x>0,并且
log
2
x
\log_2x
log2x在
x
∈
[
2
,
8
]
x \in [2, 8]
x∈[2,8]是单调递增函数,
min
log
2
2
x
=
log
2
2
2
=
1
,
max
log
2
2
x
=
log
2
2
8
=
9
\min \log_2^2x = \log_2^22 = 1, \max \log_2^2x = \log_2^28 = 9
minlog22x=log222=1,maxlog22x=log228=9。
f
(
log
2
2
x
)
=
1
−
3
log
2
2
x
f(\log_2^2x) = 1 - 3^{\log_2^2x}
f(log22x)=1−3log22x是单调递减函数,则
min
f
(
log
2
2
x
)
=
f
(
9
)
=
1
−
3
9
<
0
,
max
f
(
log
2
2
x
)
=
f
(
1
)
=
1
−
3
1
<
0
\begin{array}{l} \min f(\log_2^2x) = f(9) = 1 - 3^9 < 0, \\ \max f(\log_2^2x) = f(1) = 1 - 3^1 < 0 \end{array}
minf(log22x)=f(9)=1−39<0,maxf(log22x)=f(1)=1−31<0
再分析第二项
f
(
4
−
a
log
2
x
)
f(4 - a\log_2x)
f(4−alog2x)。
假设
4
−
a
log
2
x
≥
0
4 - a\log_2x \geq 0
4−alog2x≥0,则
f
(
4
−
a
log
2
x
)
=
1
−
3
4
−
a
log
2
x
f(4 - a\log_2x) = 1 - 3^{4 - a\log_2x}
f(4−alog2x)=1−34−alog2x是一个单调递减函数,最大值为
f
(
0
)
=
0
f(0) = 0
f(0)=0,结合第一式可知,不满足条件。
也就是说只有
4
−
a
log
2
x
<
0
4 - a\log_2x < 0
4−alog2x<0才能满足条件,可以得到
x
a
>
2
4
x^a > 2^4
xa>24,因为
x
∈
[
2
,
8
]
x \in [2, 8]
x∈[2,8],
x
a
x^a
xa是单调递增函数,即:
min
x
a
=
2
a
,
max
x
a
=
8
a
\begin{array}{l} \min x^a = 2^a, \\ \max x^a = 8^a \end{array}
minxa=2a,maxxa=8a
即
2
a
>
2
4
2^a > 2^4
2a>24,根据指数函数的单调性可知,
a
>
4
a > 4
a>4。
根据第一式最大值为
−
2
-2
−2,我们可以得到:
f
(
4
−
a
log
2
x
)
=
1
−
3
4
−
a
log
2
x
>
2
f(4 - a\log_2x) = 1 - 3^{4 - a\log_2x} > 2
f(4−alog2x)=1−34−alog2x>2
即
3
4
−
a
log
2
x
<
1
3^{4 - a\log_2x} < 1
34−alog2x<1
即
4
−
a
log
2
x
<
0
4 - a\log_2x < 0
4−alog2x<0满足条件,验证通过。
综上述:
a
>
4
a > 4
a>4。
考点分析:第一就是分析能力,第二就是对数函数和指数函数的性质要特别熟悉。
【题2】已知幂函数
f
(
x
)
=
(
2
m
2
+
m
)
x
m
f(x) = (2m^2 + m)x^m
f(x)=(2m2+m)xm在
(
0
,
+
∞
)
(0, +\infty)
(0,+∞)上单调递增,函数
g
(
x
)
g(x)
g(x)满足
g
(
2
x
−
1
)
=
−
4
x
2
−
4
x
+
1
g(2x-1) = -4x^2 - 4x + 1
g(2x−1)=−4x2−4x+1。
(1)求
f
(
x
)
,
g
(
x
)
f(x), g(x)
f(x),g(x)的解析式;
(2)已知实数
a
,
b
a, b
a,b,满足
f
(
a
−
1
)
+
1
f
(
a
−
1
)
=
g
(
b
)
f(a-1) + \frac{1}{f(a-1)} = g(b)
f(a−1)+f(a−1)1=g(b),求
a
b
a^b
ab的值。
【分析及解答】
(1)
先求
f
(
x
)
f(x)
f(x)的解析式。
指数函数的性质如下:
根据幂函数的定义得到:
幂函数的一般形式是
y
=
x
a
y = x^a
y=xa ,其中,
a
a
a可为任何常数,但中学阶段仅研究
a
a
a为有理数的情形。
可得:
2
m
2
+
m
=
1
⇒
(
2
m
−
1
)
(
m
+
1
)
=
0
⇒
m
=
1
2
或
m
=
−
1
2m^2 + m = 1 \Rightarrow (2m -1)(m+1) = 0 \Rightarrow m = \frac{1}{2}或m = -1
2m2+m=1⇒(2m−1)(m+1)=0⇒m=21或m=−1。
根据指数函数的性质及单增函数的条件,必须舍弃
m
=
−
1
m = -1
m=−1,可以得到:
f
(
x
)
=
x
1
2
f(x) = x^{\frac{1}{2}}
f(x)=x21
再求
g
(
x
)
g(x)
g(x)的解析式。
g
(
2
x
−
1
)
=
−
4
x
2
−
4
x
+
1
=
−
(
2
x
−
1
)
2
−
8
x
+
2
=
−
(
2
x
−
1
)
2
−
4
(
2
x
−
1
)
−
2
g(2x-1) = -4x^2 - 4x + 1 = -(2x -1)^2 - 8x + 2 = -(2x -1)^2 - 4(2x -1) -2
g(2x−1)=−4x2−4x+1=−(2x−1)2−8x+2=−(2x−1)2−4(2x−1)−2.
所以:
g
(
x
)
=
−
x
2
−
4
x
−
2
g(x) = -x^2 - 4x - 2
g(x)=−x2−4x−2.
(2)
f
(
a
−
1
)
+
1
f
(
a
−
1
)
=
g
(
b
)
f(a-1) + \frac{1}{f(a-1)} = g(b)
f(a−1)+f(a−1)1=g(b)代入得:
(
a
−
1
)
1
2
+
1
(
a
−
1
)
1
2
=
−
b
2
−
4
b
−
2
⇒
a
>
1
,
(
a
−
1
)
1
2
+
1
(
a
−
1
)
1
2
=
−
(
b
+
2
)
2
+
2
\begin{array}{l} (a-1)^{\frac{1}{2}} + \frac{1}{(a-1)^{\frac{1}{2}}} = -b^2 - 4b - 2 \\ \Rightarrow \\ a > 1, (a-1)^{\frac{1}{2}} + \frac{1}{(a-1)^{\frac{1}{2}}} = -(b+2)^2 + 2\\ \end{array}
(a−1)21+(a−1)211=−b2−4b−2⇒a>1,(a−1)21+(a−1)211=−(b+2)2+2
根据
a
>
1
时
,
f
(
a
−
1
)
+
1
f
(
a
−
1
)
≥
2
f
(
a
−
1
)
1
f
(
a
−
1
)
=
2
a>1时, f(a-1) + \frac{1}{f(a-1)} \geq 2\sqrt{f(a-1) \frac{1}{f(a-1)}} = 2
a>1时,f(a−1)+f(a−1)1≥2f(a−1)f(a−1)1=2
可以求得
a
=
2
,
b
=
−
2
a = 2, b = -2
a=2,b=−2,所以
a
b
=
2
−
2
=
1
4
a^b = 2^{-2} = \frac{1}{4}
ab=2−2=41.
考点分析:
(1)幂函数的定义;
(2)指数函数的性质;
(3)
a
2
+
b
2
≥
2
a
b
a^2 + b^2 \geq 2ab
a2+b2≥2ab。