物体检测算法的历史发展脉络综述

 


物体检测(或目标检测),是计算机视觉领域非常重要的应用,是许多项目的基础。在计算机视觉识别领域,主要有分类和检测两大主要任务,分类只需要把当前物体归属到特定类别,而检测除了需要分类外,还需要检测出物体的具体位置坐标,是一种更严格意义上的识别。物体检测应用领域很广,比如人脸检测, 汽车检测、人体及其他部件检测、logo检测、常见物体检测等。

对于一个专业的计算机视觉从业者来说,能较好的了解物体检测的历史发展脉络,则能把握整个技术趋势,拓展思维,明白算法的原理,对算法改进和应用大有益处。

从整个目标检测的发展来看,主要经历了两个阶段:

1. 滑动窗方法:

2. region proposal方法:

1. 滑动窗方法

滑动窗方法,是用不同尺寸的窗口在图片内滑动,提取当前窗口的视觉特征,然后送给分类器进行类别判别,最后根据每个滑动窗的分类置信度,拟合出最终的物体位置。

滑动窗方法有两个缺点:一是计算效率,需要处理成千上万个窗口,未做优化策略的情况下,性能低下;二是手工设计特征(如hog特征, haar特征, LBP特征, color特征及各种特征的组合等),不能更加详尽的表达物体的特点,造成识别率较低。

物体检测早期的算法,大多基于滑动窗,有三个重要的算法里程碑:

(1)cascade + haar特征:

 https://becominghuman.ai/face-detection-using-opencv-with-haar-cascade-classifiers-941dbb25177

(2)  svm + hog/lbp特征:

https://medium.com/@mithi/vehicles-tracking-with-hog-and-linear-svm-c9f27eaf521a

https://medium.com/@richa.agrawal228/person-detection-in-various-posture-using-hog-feature-and-svm-classifier-2c3a3991022c

(3) dpm + hog特征

https://www.rossgirshick.info/ (rbg大神的主页,凭借DPM获得终身成就奖,之后的rcnn系列也是该大神创世之作)

Object Detection with Discriminatively Trained Part Based Models 

Visual Object Detection with Deformable Part Models // 这是两篇DPM的杰作,阐述了训练,测试,cascade等,个人觉得,dpm不过时,需要认真研究一下,许多概念都对今后的基于proposal的检测方法有奠基作用(bound boxing, anchor, nms, cascade等等), dpm的源码(lsvm, llda)等在优化之后,能够达到较高的训练和推理效率,值得研究和移植

https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Girshick_Deformable_Part_Models_2015_CVPR_paper.pdf // 这篇文章,大神论证了dpm就是卷积神经网络,个人觉得也是,dpm是rcnn的一种过度,其实svm也是两层的简单神经网络(wx+b)

2.region proposal方法:

(1)rbg大神系列

Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation // rcnn

Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition // 何凯明

Fast R-CNN // fast rcnn

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks // faster rcnn , 此三篇功力深厚(rpn网络, roi-pooling)

(2) r-fcn

https://arxiv.org/abs/1605.06409 代季峰,何凯明  // 解决检测中roi-pooling与平移的矛盾,同时降低了roi-pooling 逐个计算的负载

(3) Mask R-CNN

(4) yolo & ssd:

基本原理就是合并rpn网络和分类网络,box位置经过一次回归得到,同时以固定的网格作为默认的anchor, 速度提升

(5)data driven:

主要之STN(spatial transform network, deformable R-FCN等),通过训练,学习一些变换参数,个人觉得,这个方向可能会成为主流

 

总之,在工程实践过程中,需要根据实际需要,熟悉每种检测技术的优缺点,酌情使用,没有哪一種检测技术或者分类技术是万能的,也没有哪一种网络是最棒的,论文研究和实际应用还是有很大不同.

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

seasermy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值