题意就是著名的六度分离理论,n个编号为0~n-1的人之间有m组关系表示两个人之间互相认识(无向图),判断每两个人之间是不是能通过最多六个人而认识。
这道题要注意的是两个人之间隔着六个人,所以就是相当于求两个人之间的最短路径是不是小于等于7。
要注意初始化时,自己和自己的距离就是0,初始化一定要全面。如果没有这样初始化,a[i][i]表示的是起点和终点相同,绕了一圈的最短路径,这和dijstra不同,dijstra会算成0。
由于大于7的都没有被保存,所以最后INF就代表两个人之间不能通过最多六个人认识。
#include<cstdio>
#include<cstring>
const int INF = 0x3f3f3f3f;
int main()
{
int n, m, flag, tmp, x, y;
int a[105][105];
while (~scanf("%d%d", &n, &m))
{
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
a[i][j] = INF;
for (int i = 0; i < n; i++) a[i][i] = 0;
for (int i = 0; i < m; i++)
{
scanf("%d%d", &x, &y);
a[x][y] = 1;
a[y][x] = 1;
}
for (int k = 0; k < n; k++)
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
{
tmp = a[i][k] + a[k][j];
if (tmp < a[i][j] && a[i][k] != INF && a[k][j] != INF && tmp <= 7)
a[i][j] = tmp;
}
flag = 0;
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
if (a[i][j] == INF)
{
flag = 1;
break;
}
if (flag == 1) printf("No\n");
else printf("Yes\n");
}
return 0;
}