案例分析篇00-【历年案例分析真题考点汇总】与【专栏文章案例分析高频考点目录】(2025年软考高级系统架构设计师冲刺知识点总结-案例分析篇-先导篇)

本文汇总了2012年至2023年的历年系统架构设计师案例分析真题,并提供了考试安排、案例分析题的评分标准。此外,还详述了软件架构设计、数据库设计、UML、Web架构等关键考点,为2024年考生提供全面的备考资料和知识点目录。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

专栏系列文章: 

2025高级系统架构设计师备考资料(高频考点&真题&经验)https://blog.csdn.net/seeker1994/category_12593400.html

案例分析篇01:软件架构设计考点架构风格及质量属性

案例分析篇11:UML设计考点(2025年软考系列-高级系统架构设计师冲刺知识点总结)

案例分析篇08:Web架构设计相关20个考点

......

1、历年真题案例分析题汇总

1.1 2020年~2024年 最新(每年更新)

1.2 2013年~2019年

2、考试安排

        案例分析题的考试安排在下午,时间为1.5小时,相对来说比较轻松。

上午:09:00-11:30,150分钟,2.5小时

        综合知识题,全选择题,单选题

        75个空,75分,45分合格

下午:13:30-15:00,90分钟,1.5小时

        案例分析题 5选3

        第一题是必答题,剩下的四选2,每道题25分

        共75分,45分合格

下午:15:20-17:20,120分钟,2小时

        论文题 4选1,75分,45分合格

注意多少分合格每年都会公布分数线,2023年前历年基本都是45分。但2023年下半年,各科目合格线化为了42分,后续年份怎么样关注官方通知即可。

3、专栏系列文章-案例分析篇 知识点考点目录

        专栏系列文章,会对下面目录中的知识点进行详细总结。会根据每年的真题情况,逐年修正补充考点。

1     先导篇介绍 历年真题案例分析题汇总

2     软件架构设计考点

2.1      软件架构风格

2.2      软件质量属性

2.3      特定领域软件体系结构 DSSA

2.4      架构评估方法

2.5      架构的模型:4+1视图

3     设计模式考点

3.1      设计模式的定义

3.2      设计原则

3.3      记忆口诀

3.4      创建型模式5种

3.5      结构型模式7种

3.6      行为型模式11种

3.7      真题举例

4     数据库设计相关考点(28个)

4.1      数据库分区设计

4.2      数据库主从复制

4.3      数据库设计阶段的任务

4.4      什么是超类实体?

4.5      什么是派生属性?

4.6      什么是Redis?

4.7      与Mamcached相比Redis有哪些优势?

4.8      Redis的事务

4.9      Redis的回收策略也即内存淘汰策略有哪些

4.10    Redis的删除策略

4.11    引入缓存层设计(冗余设计)

4.12    Redis的基本类型设计

4.13    Redis两种持久化方式

4.14    关系型数据库和文件系统对比

4.15    SQL语句设计影响查询效率的原则

4.16    数据访问层DAO层设计

4.17    数据库程序在线访问和ORM访问方式的比较

4.18    反规范化/反范式技术

4.19    如何解决Redis缓存与MySQL数据同步问题

4.20    NoSQL数据库

4.21    一致性Hash算法

4.22    什么是双写不一致问题

4.23    如何防止缓存Key值为空的攻击

4.24    如何避免缓存同一时间失效

4.25    MySQL优化

4.26    存储过程

4.27    常见的数据分片方式

4.28    分布式数据库

5     UML设计考点

5.1      用例图

5.1.1        用例图的定义

5.1.2        用例图中的关系

5.2      类图

5.2.1        类图的定义

5.2.2        类图中的关系

5.3      交互图

5.3.1        交互图-时序图

5.3.2        交互图-协作图

5.4      状态图

5.5      活动图

5.6      构件图

5.7      部署图

5.8      包图

6     Web架构设计相关考点(20个)

6.1      BS架构和CS架构

6.2      什么是REST

6.3      MVC架构

6.4      负载均衡机制的基本原理

6.5      正向代理和反向代理的区别

6.6      常用的负载均衡算法有哪些?

6.7      SpringMVC的处理流程

6.8      SpringAop的实现原理

6.9      分布式缓存的基本概念

6.10    请给出 Redis 分布式存储的 2 种常见方案和 Redis 集群切片的几种常见。

6.11    什么是面向服务架构(SOA)以及 ESB 在 SOA 中的作用与特点。

6.12    基于SOA的系统架构图

6.13    EJB的三种类型

6.14    响应式Web设计

6.15    应用服务器优点

6.16    J2EE架构

6.17    微服务的特点

6.18    云原生架构的设计原则

6.19    虚拟化技术的优点

6.20    Web系统常见问题出现原因

7     可靠性设计考点

7.1      可靠性的定义

7.2      可靠性设计原则

7.3      可靠性的子特性

7.4      检错技术

7.5      可靠性设计技术

7.6      可靠性分析技术

7.7      影响可靠性的因素

8     系统分析与设计考点

8.1      流程图与数据流图的含义及其区别

8.2      数据流图

8.3      数据流图中常见的错误

8.4      面向对象设计

8.5      信息工程方法中的“实体(entity)” 与面向对象方法中的“类(class)”之间有哪些不同之处?

9   信息系统安全设计考点

9.1    信息系统的主要认证方式

9.2    SQL注入攻击

9.3    网闸是什么?

9.4    列举 3 种可实现信息系统安全保障的措施

9.5    流加密与块加密

9.6    加密解密API与透明加密

9.7    信息系统面临的威胁有哪些

9.8    对称加密策略和公钥加密策略

9.9    选择公钥机制的原因

10  软件开发方法考点

        10.1    结构化方法

        10.2    面向对象方法

        10.3    面向服务的方法

        10.4    原型法

        10.5    逆向工程/再工程

        10.6    敏捷开发方法

        10.7    形式化方法

        10.8    基于构件的开发

11 软件开发模型考点

        11.1    瀑布模型

        11.2    瀑布V模型

        11.3    螺旋模型

        11.4    喷泉模型

        11.5    原型模型

        11.6    RUP统一过程模型

        11.7    开发方法与开发模型

本专栏文章,将对以上内容进行详细讲解介绍。

汇总历年真题高频案例分析考点

专栏系列文章推荐: 

2025高级系统架构设计师备考资料(高频考点&真题&经验)https://blog.csdn.net/seeker1994/category_12601310.html

案例分析篇01:软件架构设计考点架构风格及质量属性(2025年软考高级系统架构设计师冲刺知识点总结系列文章)

案例分析篇04:数据库设计相关28个考点(2025年软考高级系统架构设计师冲刺知识点总结系列文章)

案例分析篇08:Web架构设计相关20个考点(2025年软考高级系统架构设计师冲刺知识点总结系列文章)

......

在本章中,我们将深入探讨基于块匹配的全景图像拼接技术,这是一种广泛应用于计算机视觉和图像处理领域的技术。在深度学习和机器学习的背景下,这种方法的实现整合显得尤为重要,因为它们能够提升图像处理的效率和精度。下面,我们将会详细阐述相关知识点。 我们要了解什么是全景图像拼接。全景图像拼接是一种将多张有限视角的图像合并成一个宽视角或全方位视角图像的技术,常用于虚拟现实、地图制作、监控系统等领域。通过拼接,我们可以获得更广阔的视野,捕捉到单个图像无法覆盖的细节。 块匹配是全景图像拼接中的核心步骤,其目的是寻找两张图片中对应区域的最佳匹配。它通常包括以下几个关键过程: 1. **图像预处理**:图像的预处理包括灰度化、直方图均衡化、降噪等操作,以提高图像质量,使匹配更加准确。 2. **特征提取**:在每张图像上选择特定区域(块)并计算其特征,如灰度共生矩阵、SIFT(尺度不变特征变换)、SURF(加速稳健特征)等,这些特征应具备旋转、缩放和光照不变性。 3. **块匹配**:对于每一张图像的每个块,计算另一张图像所有块之间的相似度,如欧氏距离、归一化互信息等。找到最相似的块作为匹配对。 4. **几何变换估计**:根据匹配对确定对应的几何关系,例如仿射变换、透视变换等,以描述两张图像之间的相对位置。 5. **图像融合**:利用估计的几何变换,对图像进行融合,消除重叠区域的不一致性和缝隙,生成全景图像。 在MATLAB环境中实现这一过程,可以利用其强大的图像处理工具箱,包括图像读取、处理、特征检测和匹配、几何变换等功能。此外,MATLAB还支持编程和脚本,方便算法的调试和优化。 深度学习和机器学习在此处的角色主要是改进匹配过程和图像融合。例如,通过训练神经网络模型,可以学习到更具鲁棒性的特征表示,增强匹配的准确性。同时,深度学习方法也可以用于像素级别的图像融合,减少拼接的失真和不连续性。 在实际应用中,我们需要注意一些挑战,比如光照变化、遮挡、动态物体等,这些因素可能会影响匹配效果。因此,往往需要结合其他辅助技术,如多视图几何、稀疏重建等,来提高拼接的稳定性和质量。 基于块匹配的全景图像拼接是通过匹配和融合多张图像来创建全景视图的过程。在MATLAB中实现这一技术,可以结合深度学习和机器学习的先进方法,提升匹配精度和图像融合质量。通过对压缩包中的代码和数据进行学习,你可以更深入地理解这一技术,并应用于实际项目中。
基于Python+OpenCV的全景图像拼接系统设计实现 本系统的设计实现基于Python和OpenCV,旨在提供一个高效、准确的全景图像拼接系统系统的前台界面使用了最新的HTML5技术,使用DIV+CSS进行布局,使整个前台页面变得更美观,极大的提高了用户的体验。后端的代码技术选择的是PYTHON,PYTHON语言是当下最常用的编程语言之一,可以保证系统的稳定性和流畅性,PYTHON可以灵活的数据库进行连接。 系统的数据使用的MYSQL数据库,它可以提高查询的速度,增强系统数据存储的稳定性和安全性。同时,本系统的图像拼接技术以OpenCV为核心,最大化提升图片拼接的质量。 本系统的设计实现可以分为以下几个部分: 一、系统架构设计 本系统的架构设计主要基于Python和OpenCV,使用MYSQL数据库存储数据。系统的前台界面使用HTML5技术,后端使用PYTHON语言连接MYSQL数据库,实现图像拼接功能。 二、图像拼接算法 本系统使用OpenCV库实现图像拼接,OpenCV库提供了丰富的图像处理功能,可以实现图像拼接、图像识别、图像处理等功能。通过OpenCV库,可以实现高效、准确的图像拼接。 三、系统实现 本系统的实现主要基于Python和OpenCV,使用MYSQL数据库存储数据。系统的前台界面使用HTML5技术,后端使用PYTHON语言连接MYSQL数据库,实现图像拼接功能。同时,本系统还实现了用户认证、数据加密、数据备份等功能,以确保系统的安全和稳定性。 四、系统优点 本系统的优点有: * 高效:本系统使用OpenCV库实现图像拼接,可以实现高效的图像拼接。 * 准确:本系统使用OpenCV库实现图像拼接,可以实现准确的图像拼接。 * 安全:本系统实现了用户认证、数据加密、数据备份等功能,以确保系统的安全和稳定性。 * 灵活:本系统使用PYTHON语言,可以灵活的数据库进行连接,实现灵活的图像拼接功能。 本系统的设计实现可以提供一个高效、准确的全景图像拼接系统,为用户提供了一个方便、快捷的图像拼接体验。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

随风浪仔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值