04-树7 二叉搜索树的操作集 (30 分)

04-树7 二叉搜索树的操作集 (30 分)

本题要求实现给定二叉搜索树的5种常用操作。

函数接口定义:

BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );

其中BinTree结构定义如下:

typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
    ElementType Data;
    BinTree Left;
    BinTree Right;
};
  • 函数InsertX插入二叉搜索树BST并返回结果树的根结点指针;
  • 函数DeleteX从二叉搜索树BST中删除,并返回结果树的根结点指针;如果X不在树中,则打印一行Not Found并返回原树的根结点指针;
  • 函数Find在二叉搜索树BST中找到X,返回该结点的指针;如果找不到则返回空指针;
  • 函数FindMin返回二叉搜索树BST中最小元结点的指针;
  • 函数FindMax返回二叉搜索树BST中最大元结点的指针。

裁判测试程序样例:

#include <stdio.h>
#include <stdlib.h>

typedef int ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
    ElementType Data;
    BinTree Left;
    BinTree Right;
};

void PreorderTraversal( BinTree BT ); /* 先序遍历,由裁判实现,细节不表 */
void InorderTraversal( BinTree BT );  /* 中序遍历,由裁判实现,细节不表 */

BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );

int main()
{
    BinTree BST, MinP, MaxP, Tmp;
    ElementType X;
    int N, i;

    BST = NULL;
    scanf("%d", &N);
    for ( i=0; i<N; i++ ) {
        scanf("%d", &X);
        BST = Insert(BST, X);
    }
    printf("Preorder:"); PreorderTraversal(BST); printf("\n");
    MinP = FindMin(BST);
    MaxP = FindMax(BST);
    scanf("%d", &N);
    for( i=0; i<N; i++ ) {
        scanf("%d", &X);
        Tmp = Find(BST, X);
        if (Tmp == NULL) printf("%d is not found\n", X);
        else {
            printf("%d is found\n", Tmp->Data);
            if (Tmp==MinP) printf("%d is the smallest key\n", Tmp->Data);
            if (Tmp==MaxP) printf("%d is the largest key\n", Tmp->Data);
        }
    }
    scanf("%d", &N);
    for( i=0; i<N; i++ ) {
        scanf("%d", &X);
        BST = Delete(BST, X);
    }
    printf("Inorder:"); InorderTraversal(BST); printf("\n");

    return 0;
}
/* 你的代码将被嵌在这里 */

输入样例:

10
5 8 6 2 4 1 0 10 9 7
5
6 3 10 0 5
5
5 7 0 10 3结尾无空行

输出样例:

Preorder: 5 2 1 0 4 8 6 7 10 9
6 is found
3 is not found
10 is found
10 is the largest key
0 is found
0 is the smallest key
5 is found
Not Found
Inorder: 1 2 4 6 8 9结尾无空行

代码:

BinTree Insert(BinTree BST, ElementType X)
{
    if (BST == NULL)
    { //如果BST是空的
        BST = (struct TNode *)malloc(sizeof(struct TNode));
        BST->Data = X;
        BST->Left = NULL;
        BST->Right = NULL;
        return BST;
    }
    if (X < BST->Data)
        BST->Left = Insert(BST->Left, X); //如果 X < Data ,就放在左子树里
    if (X > BST->Data)
        BST->Right = Insert(BST->Right, X); //如果 X > Data ,就放在右子树里
    return BST;
}

/*删除数*/
BinTree Delete(BinTree BST, ElementType X)
{
    Position temp;
    if (!BST)
        printf("Not Found\n"); // BST为空 返回 Not Found
    else
    {
        if (X < BST->Data) //如果 X < Data ,在左子树里寻找,直到寻找到 X
            BST->Left = Delete(BST->Left, X);
        else if (X > BST->Data) //如果 X > Data ,在左子树里寻找,直到寻找到 X
            BST->Right = Delete(BST->Right, X);
        else
        { //  寻找到了 X
            if (BST->Left && BST->Right)
            { //左右节点都不空
                temp = FindMin(BST->Right);
                BST->Data = temp->Data;
                BST->Right = Delete(BST->Right, BST->Data);
            }
            else
            {
                temp = BST;
                if (!BST->Left)
                    BST = BST->Right; //左节点空
                else if (!BST->Right)
                    BST = BST->Left; //右节点空
                free(temp);          //释放,删除
            }
        }
    }
    return BST;
}

/*寻找X*/
Position Find(BinTree BST, ElementType X)
{
    if (BST == NULL)
        return BST; // BST空,返回BST
    if (BST->Data == X)
        return BST; // BST == X,返回BST
    if (BST->Data < X)
        return Find(BST->Right, X); //大于 Data ,在右子树里寻找
    if (BST->Data > X)
        return Find(BST->Left, X); //小于 Data ,在左子树里寻找
}

/*寻找最小数*/
Position FindMin(BinTree BST)
{
    if (BST)
    { //  左子树里放的都是较小的数
        while (BST->Left != NULL)
        { //寻找到 BST 左子树里最小的数
            BST = BST->Left;
        }
    }
    return BST;
}

/*寻找最大数*/
Position FindMax(BinTree BST)
{
    if (BST)
    { //  右子树里放的都是较大的数
        while (BST->Right != NULL)
        { //寻找到 BST 右子树里最大的数
            BST = BST->Right;
        }
    }
    return BST;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

追寻远方的人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值