04-树7 二叉搜索树的操作集 (30 分)
本题要求实现给定二叉搜索树的5种常用操作。
函数接口定义:
BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );
其中BinTree
结构定义如下:
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
ElementType Data;
BinTree Left;
BinTree Right;
};
- 函数
Insert
将X
插入二叉搜索树BST
并返回结果树的根结点指针; - 函数
Delete
将X
从二叉搜索树BST
中删除,并返回结果树的根结点指针;如果X
不在树中,则打印一行Not Found
并返回原树的根结点指针; - 函数
Find
在二叉搜索树BST
中找到X
,返回该结点的指针;如果找不到则返回空指针; - 函数
FindMin
返回二叉搜索树BST
中最小元结点的指针; - 函数
FindMax
返回二叉搜索树BST
中最大元结点的指针。
裁判测试程序样例:
#include <stdio.h>
#include <stdlib.h>
typedef int ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
ElementType Data;
BinTree Left;
BinTree Right;
};
void PreorderTraversal( BinTree BT ); /* 先序遍历,由裁判实现,细节不表 */
void InorderTraversal( BinTree BT ); /* 中序遍历,由裁判实现,细节不表 */
BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );
int main()
{
BinTree BST, MinP, MaxP, Tmp;
ElementType X;
int N, i;
BST = NULL;
scanf("%d", &N);
for ( i=0; i<N; i++ ) {
scanf("%d", &X);
BST = Insert(BST, X);
}
printf("Preorder:"); PreorderTraversal(BST); printf("\n");
MinP = FindMin(BST);
MaxP = FindMax(BST);
scanf("%d", &N);
for( i=0; i<N; i++ ) {
scanf("%d", &X);
Tmp = Find(BST, X);
if (Tmp == NULL) printf("%d is not found\n", X);
else {
printf("%d is found\n", Tmp->Data);
if (Tmp==MinP) printf("%d is the smallest key\n", Tmp->Data);
if (Tmp==MaxP) printf("%d is the largest key\n", Tmp->Data);
}
}
scanf("%d", &N);
for( i=0; i<N; i++ ) {
scanf("%d", &X);
BST = Delete(BST, X);
}
printf("Inorder:"); InorderTraversal(BST); printf("\n");
return 0;
}
/* 你的代码将被嵌在这里 */
输入样例:
10
5 8 6 2 4 1 0 10 9 7
5
6 3 10 0 5
5
5 7 0 10 3结尾无空行
输出样例:
Preorder: 5 2 1 0 4 8 6 7 10 9
6 is found
3 is not found
10 is found
10 is the largest key
0 is found
0 is the smallest key
5 is found
Not Found
Inorder: 1 2 4 6 8 9结尾无空行
代码:
BinTree Insert(BinTree BST, ElementType X)
{
if (BST == NULL)
{ //如果BST是空的
BST = (struct TNode *)malloc(sizeof(struct TNode));
BST->Data = X;
BST->Left = NULL;
BST->Right = NULL;
return BST;
}
if (X < BST->Data)
BST->Left = Insert(BST->Left, X); //如果 X < Data ,就放在左子树里
if (X > BST->Data)
BST->Right = Insert(BST->Right, X); //如果 X > Data ,就放在右子树里
return BST;
}
/*删除数*/
BinTree Delete(BinTree BST, ElementType X)
{
Position temp;
if (!BST)
printf("Not Found\n"); // BST为空 返回 Not Found
else
{
if (X < BST->Data) //如果 X < Data ,在左子树里寻找,直到寻找到 X
BST->Left = Delete(BST->Left, X);
else if (X > BST->Data) //如果 X > Data ,在左子树里寻找,直到寻找到 X
BST->Right = Delete(BST->Right, X);
else
{ // 寻找到了 X
if (BST->Left && BST->Right)
{ //左右节点都不空
temp = FindMin(BST->Right);
BST->Data = temp->Data;
BST->Right = Delete(BST->Right, BST->Data);
}
else
{
temp = BST;
if (!BST->Left)
BST = BST->Right; //左节点空
else if (!BST->Right)
BST = BST->Left; //右节点空
free(temp); //释放,删除
}
}
}
return BST;
}
/*寻找X*/
Position Find(BinTree BST, ElementType X)
{
if (BST == NULL)
return BST; // BST空,返回BST
if (BST->Data == X)
return BST; // BST == X,返回BST
if (BST->Data < X)
return Find(BST->Right, X); //大于 Data ,在右子树里寻找
if (BST->Data > X)
return Find(BST->Left, X); //小于 Data ,在左子树里寻找
}
/*寻找最小数*/
Position FindMin(BinTree BST)
{
if (BST)
{ // 左子树里放的都是较小的数
while (BST->Left != NULL)
{ //寻找到 BST 左子树里最小的数
BST = BST->Left;
}
}
return BST;
}
/*寻找最大数*/
Position FindMax(BinTree BST)
{
if (BST)
{ // 右子树里放的都是较大的数
while (BST->Right != NULL)
{ //寻找到 BST 右子树里最大的数
BST = BST->Right;
}
}
return BST;
}