1944 年,特种兵麦克接到国防部的命令,要求立即赶赴太平洋上的一个孤岛,营救被敌军俘虏的大兵瑞恩。
瑞恩被关押在一个迷宫里,迷宫地形复杂,但幸好麦克得到了迷宫的地形图。
迷宫的外形是一个长方形,其南北方向被划分为 N 行,东西方向被划分为 M 列, 于是整个迷宫被划分为 N×M 个单元。
每一个单元的位置可用一个有序数对 (单元的行号, 单元的列号) 来表示。
南北或东西方向相邻的 2 个单元之间可能互通,也可能有一扇锁着的门,或者是一堵不可逾越的墙。
注意: 门可以从两个方向穿过,即可以看成一条无向边。
迷宫中有一些单元存放着钥匙,同一个单元可能存放 多把钥匙,并且所有的门被分成 P 类,打开同一类的门的钥匙相同,不同类门的钥匙不同。
大兵瑞恩被关押在迷宫的东南角,即 (N,M) 单元里,并已经昏迷。
迷宫只有一个入口,在西北角。
也就是说,麦克可以直接进入 (1,1) 单元。
另外,麦克从一个单元移动到另一个相邻单元的时间为 1,拿取所在单元的钥匙的时间以及用钥匙开门的时间可忽略不计。
试设计一个算法,帮助麦克以最快的方式到达瑞恩所在单元,营救大兵瑞恩。
输入格式
第一行有三个整数,分别表示 N,M,P 的值。
第二行是一个整数 k,表示迷宫中门和墙的总数。
接下来 k 行,每行包含五个整数,Xi1,Yi1,Xi2,Yi2,Gi:当 Gi≥1 时,表示 (Xi1,Yi1) 单元与 (Xi2,Yi2) 单元之间有一扇第 Gi 类的门,当 Gi=0 时,表示 (Xi1,Yi1) 单元与 (Xi2,Yi2) 单元之间有一面不可逾越的墙。
接下来一行,包含一个整数 S,表示迷宫中存放的钥匙的总数。
接下来 S 行,每行包含三个整数 Xi1,Yi1,Qi,表示 (Xi1,Yi1) 单元里存在一个能开启第 Qi 类门的钥匙。
输出格式
输出麦克营救到大兵瑞恩的最短时间。
如果问题无解,则输出 -1。
数据范围
|Xi1−Xi2|+|Yi1−Yi2|=1,
0≤Gi≤P,
1≤Qi≤P,
1≤N,M,P≤10,
1≤k≤150
输入样例:
4 4 9
9
1 2 1 3 2
1 2 2 2 0
2 1 2 2 0
2 1 3 1 0
2 3 3 3 0
2 4 3 4 1
3 2 3 3 0
3 3 4 3 0
4 3 4 4 0
2
2 1 2
4 2 1
输出样例:
14
样例解释:
迷宫如下所示:
思路:
/*
将迷宫中的二维坐标压缩成一维数组方便枚举,即nn行mm列的迷宫中点(x,y)的下标为t=(x−1)∗n+y
设dist[t][state]表示所有从起点走到tt这个格子,且当前已经拥有的钥匙是state的所有路线的集合中的最短距离
用一个10位的二进制数state存储每一类🔑的存放情况
初始时,对于没有🔑的单元,只有一种状态dist[t][0];对于包含🔑的单元,有两种状态dist[t][0]和dist[t][state](因为只要有钥匙一定是全部带着,否则有可能走回头路)
状态转移的方式分以下2种情况:
拿起所有钥匙(花费时间0):dist[t][state]=min(dist[t][state],dist[t][0])
向四周移动,只有以下2种情况能走(花费时间1):dist[t1][state]=min(dist[t1][state],dist[t2][state]+1)
(1)没有门和墙
(2)有门,且有匹配的钥匙
状态转移过程中花费时间只有0或者1,因此考虑使用双端队列BFS
*/
代码:
// 拆点
#include <bits/stdc++.h>
using namespace std;
typedef pair<int, int> PII;
const int N = 11, M = 360, P = 1 << 10;
int n, m, k, p;
int h[N * N], e[M], ne[M], w[M], idx;
int g[N][N], key[N * N];
int dist[N * N][P];
bool st[N * N][P];
int nex[4][2] = {{-1, 0}, {0, 1}, {1, 0}, {0, -1}};
set<PII> edges;
void add(int a, int b, int c)
{
e[idx] = b;
w[idx] = c;
ne[idx] = h[a];
h[a] = idx++;
}
void build()
{
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= m; j++)
{
for (int k = 0; k < 4; k++)
{
int dx = i + nex[k][0], dy = j + nex[k][1];
if (dx < 1 || dx > n || dy < 1 || dy > m)
continue;
int a = g[i][j], b = g[dx][dy];
if (!edges.count({a, b})) // 不在集合中 则可以随意走
add(a, b, 0);
}
}
}
}
int bfs()
{
memset(dist, 0x3f, sizeof(dist));
dist[1][0] = 0;
deque<PII> qu;
qu.push_back({1, 0});
while (qu.size())
{
PII t = qu.front();
qu.pop_front();
int ver = t.first, ori = t.second;
if (st[ver][ori])
continue;
st[ver][ori] = 1;
if (ver == n * m)
return dist[ver][ori];
if (key[ver]) // 捡起钥匙 放入堆中
{
int state = ori | key[ver];
if (dist[ver][state] > dist[ver][ori])
{
dist[ver][state] = dist[ver][ori];
qu.push_front({ver, state});
}
}
for (int i = h[ver]; i != -1; i = ne[i])
{
int j = e[i];
if (!st[j][ori]) // 未捡起的状态更新其他点
{
if (w[i] && !(ori >> (w[i] - 1) & 1)) // 如果有锁且没有钥匙
continue;
if (dist[j][ori] > dist[ver][ori] + 1)
{
dist[j][ori] = dist[ver][ori] + 1;
qu.push_back({j, ori});
}
}
}
}
return -1;
}
int main()
{
cin >> n >> m >> p >> k;
for (int i = 1, t = 1; i <= n; i++) // 二维化一维
for (int j = 1; j <= m; j++, t++)
g[i][j] = t;
memset(h, -1, sizeof(h));
while (k--)
{
int x1, y1, x2, y2, c;
cin >> x1 >> y1 >> x2 >> y2 >> c;
int a = g[x1][y1], b = g[x2][y2];
edges.insert({a, b}), edges.insert({b, a});
if (c)
add(a, b, c), add(b, a, c);
}
build();
int s;
cin >> s;
while (s--) // 状态压缩钥匙
{
int x, y, c;
cin >> x >> y >> c;
key[g[x][y]] |= 1 << c - 1;
}
cout << bfs() << endl;
return 0;
}