MATLAB对多元统计数据采用面向列的分析。每一列表示一个变量,每一行表示一个观察值,所以,矩阵的(i,j)元素就是第j个变量的第i个观察值。
举个例子,假设一个数据集包括了心跳、体重、每周的运动时间(小时)三个变量,对于五个观察值的数据集如下:
D = [ 72 134 3.2
81 201 3.5
69 156 7.1
82 148 2.4
75 170 1.2 ]
有五行表示这分别是五个病人的统计数据,每一行表示一个病人的心跳、体重和每周的运动时间。
现在可以使用MATLAB的各种数据分析函数(MATLAB data analysis functions)来对这个数据集合进行操作。如我们可以用如下方式来获得数据集的每一列的平均值和标准偏差(Standard deviation)。
mu = mean(D), sigma = std(D)
mu =
75.8 161.8 3.48
sigma =
5.6303 25.499 2.2107
附:⒈std( ):求得一个向量,或矩阵的标准偏差。
式中:
s = std(X):X是一个向量,则用(1)式返回其标准偏差,如果X是一个矩阵,则用(1)式返回一个
行向量,其每一个元素是X的每一列的标准偏差。
s=std(X,flag):如果flag=0,则用(1)式,如果flag=1,则用(2)式。
⒉mean( ):mean(X)的处理方式和std(X)一样,所不同的是mean(X)求的平均值。